Pierluigi Francesco de Paola, Alessandro Borri, Alessia Paglialonga, Pasquale Palumbo, Fabrizio Dabbene
{"title":"A Model-Based Approach for Glucose Control via Physical Activity.","authors":"Pierluigi Francesco de Paola, Alessandro Borri, Alessia Paglialonga, Pasquale Palumbo, Fabrizio Dabbene","doi":"10.3233/SHTI250267","DOIUrl":null,"url":null,"abstract":"<p><p>The role played by physical activity in slowing down the progression of type-2 diabetes is well recognized. However, except for general clinical guidelines, quantitative real-time estimates of the recommended amount of physical activity, based on the evolving individual conditions, are still missing in the literature. The aim of this work is to provide a control-theoretical formulation of the exercise encoding all the exercise-related features (intensity, duration, period). Specifically, we design a feedback law in terms of recommended physical activity, following a model predictive control approach, based on a widespread compact diabetes progression model, suitably modified to account for the long-term effects of regular exercise. Preliminary simulations show promising results, well aligned with clinical evidence. These findings can be the basis for further validation of the control law on high-dimensional diabetes progression models to ultimately translate the predictions of the controller into meaningful recommendations.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"327 ","pages":"27-31"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The role played by physical activity in slowing down the progression of type-2 diabetes is well recognized. However, except for general clinical guidelines, quantitative real-time estimates of the recommended amount of physical activity, based on the evolving individual conditions, are still missing in the literature. The aim of this work is to provide a control-theoretical formulation of the exercise encoding all the exercise-related features (intensity, duration, period). Specifically, we design a feedback law in terms of recommended physical activity, following a model predictive control approach, based on a widespread compact diabetes progression model, suitably modified to account for the long-term effects of regular exercise. Preliminary simulations show promising results, well aligned with clinical evidence. These findings can be the basis for further validation of the control law on high-dimensional diabetes progression models to ultimately translate the predictions of the controller into meaningful recommendations.