Camila Wendt , Fernanda C. de Medeiros , Raquel P. Gonçalves , Fabio Nudelman , Michelle Klautau , Marcos Farina , André L. Rossi
{"title":"Calcium carbonate deposition in the spicules of the sponge Heteropia glomerosa (Porifera, Calcarea)","authors":"Camila Wendt , Fernanda C. de Medeiros , Raquel P. Gonçalves , Fabio Nudelman , Michelle Klautau , Marcos Farina , André L. Rossi","doi":"10.1016/j.jsb.2025.108210","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the biomineralization process of calcium carbonate deposition in the spicules of the calcareous sponge <em>Heteropia glomerosa</em> (Porifera, Calcarea). The finely polished spicules, composed of Mg-calcite, present a pattern of concentric lines spaced 400 nm apart when observed by scanning electron microscopy. We showed by electron backscattered diffraction that the whole spicule length has the same crystallographic orientation. Still, misorientation of up to 1.8° in adjacent regions (∼ 2 µm) and a continuous increase in the misalignment of up to 4.5° in regions separated by 300 µm were present. The sponge cells (mainly sclerocytes and pinacocytes) near the mineralization zone contain a high number of vesicles rich in calcium, which could be involved in the spicule biomineralization. We showed by electron and ion microscopies that the spicule growth occurs through the addition calcium carbonate granules, which form near the membrane of the sclerocyte, the cell responsible for biomineralization. The granules were deposited layer by layer on the surface of the spicule, increasing the biomineral thickness. Domains of 1–3 µm containing facets partially connected and surrounded by organic material were observed in an intermediate stage of the spicule growth. Misorientation between these domains was approximately 2°, similar to the misorientation obtained by electron backscattered diffraction, indicating that the spicule is formed by the addition of granules fusing in a predominant orientation.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108210"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000450","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the biomineralization process of calcium carbonate deposition in the spicules of the calcareous sponge Heteropia glomerosa (Porifera, Calcarea). The finely polished spicules, composed of Mg-calcite, present a pattern of concentric lines spaced 400 nm apart when observed by scanning electron microscopy. We showed by electron backscattered diffraction that the whole spicule length has the same crystallographic orientation. Still, misorientation of up to 1.8° in adjacent regions (∼ 2 µm) and a continuous increase in the misalignment of up to 4.5° in regions separated by 300 µm were present. The sponge cells (mainly sclerocytes and pinacocytes) near the mineralization zone contain a high number of vesicles rich in calcium, which could be involved in the spicule biomineralization. We showed by electron and ion microscopies that the spicule growth occurs through the addition calcium carbonate granules, which form near the membrane of the sclerocyte, the cell responsible for biomineralization. The granules were deposited layer by layer on the surface of the spicule, increasing the biomineral thickness. Domains of 1–3 µm containing facets partially connected and surrounded by organic material were observed in an intermediate stage of the spicule growth. Misorientation between these domains was approximately 2°, similar to the misorientation obtained by electron backscattered diffraction, indicating that the spicule is formed by the addition of granules fusing in a predominant orientation.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure