Jingyu Duan , Feilong Pei , Jiale Miao , Shuang Liu , Lin Tan , Mengyuan Lu , Yaowu Liu , Chunping Zhang
{"title":"Swietenine improved the progression of diabetic nephropathy through inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway","authors":"Jingyu Duan , Feilong Pei , Jiale Miao , Shuang Liu , Lin Tan , Mengyuan Lu , Yaowu Liu , Chunping Zhang","doi":"10.1016/j.jep.2025.119981","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Swietenia macrophylla King is a traditional medicinal plant extensively utilized in Asia and its pharmacological properties primarily involve antidiabetic, anti-inflammatory, antioxidant, antibacterial, and antitumor effects. Swietenine (Swi), the major bioactive compound presents in the fruits of <em>S. macrophylla,</em> has demonstrated beneficial therapeutic effects on diabetic nephropathy (DN). However, the underlying mechanism through which Swi influences DN remains unclear.</div><div><em>Aim of the study</em>: The current research aims to investigate the effects of Swi on DN and explore its underlying mechanisms associated with ferroptosis, both in vivo and in vitro.</div></div><div><h3>Methods</h3><div>A model of streptozotocin/high-fat diet (STZ/HFD)-induced Sprague-Dawley (SD) rats was employed to assess the effect of Swi on improving DN and resisting ferroptosis in vivo. Additionally, mouse podocyte cells (MPC-5 cells) were induced by high glucose (HG) and cultured to explore the potential mechanisms of Swi in treating DN in vitro. To further validate the protective effects of Swi, pathway-specific inhibitors were administered to HG-induced MPC-5 cells to confirm the involvement of the Akt/GSK-3β/Nrf2 signaling pathway in the inhibition of ferroptosis. A combination of proteomics, immunohistochemical staining, western blotting, and cell culture techniques was utilized to explore the pharmacological mechanisms of Swi. Furthermore, network pharmacology and molecular docking analyses were conducted to predict the targets of Swi in relation to DN, which were subsequently validated through Western blotting analysis.</div></div><div><h3>Results</h3><div>Administration of Swi significantly enhanced renal function and ameliorated pathological alterations in DN rats, as well as improved oxidative stress and inhibited ferroptosis. In vitro studies revealed that Swi dramatically improved the cell viability and mitigated oxidative stress, and inhibited ferroptosis via activating the Akt/GSK-3β/Nrf2 signaling pathway in HG-induced MPC-5 cells.</div></div><div><h3>Conclusion</h3><div>This study demonstrates that Swi improves DN by inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway for the first time, thereby providing a scientific basis that Swi is expected to be a promising candidate drug for the treatment of DN.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"349 ","pages":"Article 119981"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037887412500666X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance
Swietenia macrophylla King is a traditional medicinal plant extensively utilized in Asia and its pharmacological properties primarily involve antidiabetic, anti-inflammatory, antioxidant, antibacterial, and antitumor effects. Swietenine (Swi), the major bioactive compound presents in the fruits of S. macrophylla, has demonstrated beneficial therapeutic effects on diabetic nephropathy (DN). However, the underlying mechanism through which Swi influences DN remains unclear.
Aim of the study: The current research aims to investigate the effects of Swi on DN and explore its underlying mechanisms associated with ferroptosis, both in vivo and in vitro.
Methods
A model of streptozotocin/high-fat diet (STZ/HFD)-induced Sprague-Dawley (SD) rats was employed to assess the effect of Swi on improving DN and resisting ferroptosis in vivo. Additionally, mouse podocyte cells (MPC-5 cells) were induced by high glucose (HG) and cultured to explore the potential mechanisms of Swi in treating DN in vitro. To further validate the protective effects of Swi, pathway-specific inhibitors were administered to HG-induced MPC-5 cells to confirm the involvement of the Akt/GSK-3β/Nrf2 signaling pathway in the inhibition of ferroptosis. A combination of proteomics, immunohistochemical staining, western blotting, and cell culture techniques was utilized to explore the pharmacological mechanisms of Swi. Furthermore, network pharmacology and molecular docking analyses were conducted to predict the targets of Swi in relation to DN, which were subsequently validated through Western blotting analysis.
Results
Administration of Swi significantly enhanced renal function and ameliorated pathological alterations in DN rats, as well as improved oxidative stress and inhibited ferroptosis. In vitro studies revealed that Swi dramatically improved the cell viability and mitigated oxidative stress, and inhibited ferroptosis via activating the Akt/GSK-3β/Nrf2 signaling pathway in HG-induced MPC-5 cells.
Conclusion
This study demonstrates that Swi improves DN by inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway for the first time, thereby providing a scientific basis that Swi is expected to be a promising candidate drug for the treatment of DN.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.