Tina Lehrich, Anne Dierks, Masina Plenge, Helena Obernolte, Klaudia Grieger, Katherina Sewald, Frederic Rodriguez, Lucie Malet, Peter Braubach, Florence Bedos-Belval, Anaclet Ngezahayo
{"title":"Repression of Connexin26 hemichannel activity protects the barrier function of respiratory airway epithelial cells against LPS-induced alteration.","authors":"Tina Lehrich, Anne Dierks, Masina Plenge, Helena Obernolte, Klaudia Grieger, Katherina Sewald, Frederic Rodriguez, Lucie Malet, Peter Braubach, Florence Bedos-Belval, Anaclet Ngezahayo","doi":"10.1186/s12964-025-02228-6","DOIUrl":null,"url":null,"abstract":"<p><p>In respiratory airway epithelial cells, lipopolysaccharide (LPS) treatment induced an enhancement of connexin 26 (Cx26) hemichannel activity shown by dye uptake experiments after siRNA-mediated knock-down of Cx26. This effect was already observed at infection relevant concentrations (≤ 10 ng/mL LPS) and involved tumor necrosis factor alpha (TNF-α)- and Ca<sup>2+</sup>-dependent signaling. High concentrations (1 µg/mL LPS) reduced the transepithelial electrical resistance (TEER) of Calu-3 cells by 35% within an application time of 3 h followed by a recovery. Parallel to barrier alteration, a reduced tight junction organization rate (TiJOR) of claudin-4 (CLDN4) by 75% was observed within an application time of 3 h. After TEER recovery, CLDN4 TiJOR stayed reduced. Low concentrations (10 ng/mL LPS) required three times repeated application for barrier reduction and CLDN4 TiJOR reduction by 30%. The small molecule CVB4-57, newly published as a potential inhibitor of Cx26 hemichannels, mitigated the effects of LPS on the epithelial barrier function. Molecular docking studies revealed a potential interaction between CVB4-57 and Cx26 thereby reducing its hemichannel activity. We conclude that LPS-related enhancement of Cx26 hemichannel activity acts like a \"molecular scar\" that weakens the lung epithelium, which could be attenuated by agents targeting Cx26 hemichannels.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"226"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02228-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In respiratory airway epithelial cells, lipopolysaccharide (LPS) treatment induced an enhancement of connexin 26 (Cx26) hemichannel activity shown by dye uptake experiments after siRNA-mediated knock-down of Cx26. This effect was already observed at infection relevant concentrations (≤ 10 ng/mL LPS) and involved tumor necrosis factor alpha (TNF-α)- and Ca2+-dependent signaling. High concentrations (1 µg/mL LPS) reduced the transepithelial electrical resistance (TEER) of Calu-3 cells by 35% within an application time of 3 h followed by a recovery. Parallel to barrier alteration, a reduced tight junction organization rate (TiJOR) of claudin-4 (CLDN4) by 75% was observed within an application time of 3 h. After TEER recovery, CLDN4 TiJOR stayed reduced. Low concentrations (10 ng/mL LPS) required three times repeated application for barrier reduction and CLDN4 TiJOR reduction by 30%. The small molecule CVB4-57, newly published as a potential inhibitor of Cx26 hemichannels, mitigated the effects of LPS on the epithelial barrier function. Molecular docking studies revealed a potential interaction between CVB4-57 and Cx26 thereby reducing its hemichannel activity. We conclude that LPS-related enhancement of Cx26 hemichannel activity acts like a "molecular scar" that weakens the lung epithelium, which could be attenuated by agents targeting Cx26 hemichannels.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.