Xu Wang, Ming Yan, Shanshan Cui, Fang Li, Qingqing Zhao, Qingnan Wang, Bin Jiang, Yixin Huang, Yang Sun, Xiangdong Kong
{"title":"Common bean pan-genome reveals abundant variation patterns and relationships of stress response genes and pathways.","authors":"Xu Wang, Ming Yan, Shanshan Cui, Fang Li, Qingqing Zhao, Qingnan Wang, Bin Jiang, Yixin Huang, Yang Sun, Xiangdong Kong","doi":"10.1186/s12864-025-11662-2","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term geographical isolation and the different directions of domestication can cause a large number of genome variations. Population genetic analysis based on a single reference genome cannot capture all the variation information. Pan-genome construction is an effective way to overcome this problem. Resequencing data from 683 common bean landraces and breeding lines provided a pan-genome construction data resource. For the first time, for common bean pan-genome construction, 305 Mb non-reference contigs and 10,452 novel genes were identified. Among these new genes, 373 resistance gene analogs containing 372 variable genes were identified and used to narrow down the candidate genes in Pseudomonas syringae pv. phaseolicola resistance quantitative trait locus interval of the common bean. Transcriptome analysis of multiple biotic and abiotic stresses reveals that gene expression patterns are organ-, stress-, and gene conservation-specific. Core and shell genes may be co-expressed in all samples and may have functional complementarity to maintain the stability of plant growth. Within pathways, 8990 and 30,272 mutual exclusivity and co-occurrence gene presence-absence variations (PAVs) were discovered respectively, providing further insights into the functional complementarity of genes. In conclusion, our study provides a comprehensive genome resource, which will be useful for further common bean breeding and study.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"495"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11662-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term geographical isolation and the different directions of domestication can cause a large number of genome variations. Population genetic analysis based on a single reference genome cannot capture all the variation information. Pan-genome construction is an effective way to overcome this problem. Resequencing data from 683 common bean landraces and breeding lines provided a pan-genome construction data resource. For the first time, for common bean pan-genome construction, 305 Mb non-reference contigs and 10,452 novel genes were identified. Among these new genes, 373 resistance gene analogs containing 372 variable genes were identified and used to narrow down the candidate genes in Pseudomonas syringae pv. phaseolicola resistance quantitative trait locus interval of the common bean. Transcriptome analysis of multiple biotic and abiotic stresses reveals that gene expression patterns are organ-, stress-, and gene conservation-specific. Core and shell genes may be co-expressed in all samples and may have functional complementarity to maintain the stability of plant growth. Within pathways, 8990 and 30,272 mutual exclusivity and co-occurrence gene presence-absence variations (PAVs) were discovered respectively, providing further insights into the functional complementarity of genes. In conclusion, our study provides a comprehensive genome resource, which will be useful for further common bean breeding and study.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.