{"title":"Quantum Algorithms for Quantum Molecular Systems: A Survey","authors":"Yukun Zhang, Xiaoming Zhang, Jinzhao Sun, Heng Lin, Yifei Huang, Dingshun Lv, Xiao Yuan","doi":"10.1002/wcms.70020","DOIUrl":null,"url":null,"abstract":"<p>Solving quantum molecular systems presents a significant challenge for classical computation. The advent of early fault-tolerant quantum computing devices offers a promising avenue to address these challenges, leveraging advanced quantum algorithms with reduced hardware requirements. This review surveys the latest developments in quantum computing algorithms for quantum molecular systems in the fault-tolerant quantum computing era, covering encoding schemes, advanced Hamiltonian simulation techniques, and ground-state energy estimation methods. We highlight recent progress in overcoming practical barriers, such as reducing circuit depth and minimizing the use of ancillary qubits. Special attention is given to the potential quantum advantages achievable through these algorithms, as well as the limitations imposed by dequantization and classical simulation techniques. The review concludes with a discussion of future directions, emphasizing the need for optimized algorithms and experimental validation to bridge the gap between theoretical developments and practical implementation for quantum molecular systems.</p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solving quantum molecular systems presents a significant challenge for classical computation. The advent of early fault-tolerant quantum computing devices offers a promising avenue to address these challenges, leveraging advanced quantum algorithms with reduced hardware requirements. This review surveys the latest developments in quantum computing algorithms for quantum molecular systems in the fault-tolerant quantum computing era, covering encoding schemes, advanced Hamiltonian simulation techniques, and ground-state energy estimation methods. We highlight recent progress in overcoming practical barriers, such as reducing circuit depth and minimizing the use of ancillary qubits. Special attention is given to the potential quantum advantages achievable through these algorithms, as well as the limitations imposed by dequantization and classical simulation techniques. The review concludes with a discussion of future directions, emphasizing the need for optimized algorithms and experimental validation to bridge the gap between theoretical developments and practical implementation for quantum molecular systems.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.