Model Bias Identification for Bayesian Calibration of Stochastic Digital Twins of Bridges

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Daniel Andrés Arcones, Martin Weiser, Phaedon-Stelios Koutsourelakis, Jörg F. Unger
{"title":"Model Bias Identification for Bayesian Calibration of Stochastic Digital Twins of Bridges","authors":"Daniel Andrés Arcones,&nbsp;Martin Weiser,&nbsp;Phaedon-Stelios Koutsourelakis,&nbsp;Jörg F. Unger","doi":"10.1002/asmb.2897","DOIUrl":null,"url":null,"abstract":"<p>Simulation-based digital twins must provide accurate, robust, and reliable digital representations of their physical counterparts. Therefore, quantifying the uncertainty in their predictions plays a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must then be carefully implemented. When applied to complex structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aimed at inferring the model parameters often fail to compensate for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for these models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of these approaches into the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error, and provides further insight into the system by including additional pre-existing information without modifying the computational model.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2897","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2897","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation-based digital twins must provide accurate, robust, and reliable digital representations of their physical counterparts. Therefore, quantifying the uncertainty in their predictions plays a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must then be carefully implemented. When applied to complex structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aimed at inferring the model parameters often fail to compensate for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for these models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of these approaches into the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error, and provides further insight into the system by including additional pre-existing information without modifying the computational model.

桥梁随机数字孪生贝叶斯校正的模型偏差辨识
基于仿真的数字孪生必须提供其物理对应物的准确、健壮和可靠的数字表示。因此,量化他们预测中的不确定性在做出影响实际系统的更明智的决策中起着关键作用。基于数据的仿真模型的更新必须小心地实现。当应用于桥梁等复杂结构时,计算模型与实际系统之间的差异表现为模型偏差,这阻碍了数字孪生的可信度并增加了其不确定性。旨在推断模型参数的经典贝叶斯更新方法往往无法补偿这种模型偏差,导致过度自信和不可靠的预测。在本文中,评估了两种可选的模型偏差识别方法在桥梁数字孪生中的适用性。Kennedy和O'Hagan方法的模块化版本和另一种基于正交高斯过程的方法在一组代表性基准中与经典贝叶斯推理框架进行了比较。此外,对这些模型提出了两种新的扩展:包含噪声感知核和通过偏差项引入计算模型中不存在的附加变量。将这些方法集成到数字孪生中可以纠正预测,量化其不确定性,估计未知物理误差源的噪声,并通过包含额外的预先存在的信息而无需修改计算模型,从而进一步了解系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信