Quantifying the Cooperativity of Backbone Hydrogen Bonding

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
You Xu, Jing Huang
{"title":"Quantifying the Cooperativity of Backbone Hydrogen Bonding","authors":"You Xu,&nbsp;Jing Huang","doi":"10.1002/jcc.70133","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The hydrogen bonds (H-bonds) between backbone amide and carbonyl groups are fundamental to the stability, structure, and dynamics of proteins. A key feature of such hydrogen bonding interactions is that multiple H-bonds can enhance each other when aligned, as such in the <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math>-helix or <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math>-sheet secondary structures. To better understand this cooperative effect, we propose a new physical quantity to evaluate the cooperativity of intermolecular interactions. Using H-bond aligned N-methylacetamide molecules as the model system, we assess the cooperativity of protein backbone hydrogen bonds using quantum chemistry (QM) calculations at the MP2/aug-cc-pVTZ level, revealing cooperative energies ranging from 2 to 4.3 kcal/mol. A set of protein force fields was benchmarked against QM results. While the additive force field failed to reproduce cooperativity, polarizable force fields, including the Drude and AMOEBA protein force fields, have been found to reproduce the trend of QM results, albeit with smaller magnitude. This work demonstrates the theoretical utility of the proposed formula for quantifying cooperativity and its relevance in force field parameterization. Incorporating cooperative energy into polarizable models presents a pathway to achieving more accurate simulations of biomolecular systems.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 14","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70133","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen bonds (H-bonds) between backbone amide and carbonyl groups are fundamental to the stability, structure, and dynamics of proteins. A key feature of such hydrogen bonding interactions is that multiple H-bonds can enhance each other when aligned, as such in the α $$ \alpha $$ -helix or β $$ \beta $$ -sheet secondary structures. To better understand this cooperative effect, we propose a new physical quantity to evaluate the cooperativity of intermolecular interactions. Using H-bond aligned N-methylacetamide molecules as the model system, we assess the cooperativity of protein backbone hydrogen bonds using quantum chemistry (QM) calculations at the MP2/aug-cc-pVTZ level, revealing cooperative energies ranging from 2 to 4.3 kcal/mol. A set of protein force fields was benchmarked against QM results. While the additive force field failed to reproduce cooperativity, polarizable force fields, including the Drude and AMOEBA protein force fields, have been found to reproduce the trend of QM results, albeit with smaller magnitude. This work demonstrates the theoretical utility of the proposed formula for quantifying cooperativity and its relevance in force field parameterization. Incorporating cooperative energy into polarizable models presents a pathway to achieving more accurate simulations of biomolecular systems.

Abstract Image

主氢键协同性的量化
酰胺基和羰基之间的氢键是蛋白质稳定性、结构和动力学的基础。这种氢键相互作用的一个关键特征是多个氢键在排列时可以相互增强,例如在α $$ \alpha $$ -螺旋或β $$ \beta $$ -片状二级结构中。为了更好地理解这种协同效应,我们提出了一个新的物理量来评价分子间相互作用的协同性。以氢键排列的n -甲基乙酰胺分子为模型系统,利用MP2/aug-cc-pVTZ水平的量子化学(QM)计算评估了蛋白质主氢键的协同性,揭示了协同能范围为2至4.3 kcal/mol。将一组蛋白质力场与QM结果作为基准。加性力场无法再现协同性,而极化力场(包括Drude和AMOEBA蛋白力场)可以再现量子力学结果的趋势,但量级较小。这项工作证明了所提出的量化协同性公式的理论效用及其在力场参数化中的相关性。在极化模型中引入协同能量是实现生物分子系统更精确模拟的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信