Quantization-Based Latin Hypercube Sampling for Dependent Inputs With an Application to Sensitivity Analysis of Environmental Models

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Guerlain Lambert, Céline Helbert, Claire Lauvernet
{"title":"Quantization-Based Latin Hypercube Sampling for Dependent Inputs With an Application to Sensitivity Analysis of Environmental Models","authors":"Guerlain Lambert,&nbsp;Céline Helbert,&nbsp;Claire Lauvernet","doi":"10.1002/asmb.2899","DOIUrl":null,"url":null,"abstract":"<p>Numerical models are essential for comprehending intricate physical phenomena in different domains. To handle their complexity, sensitivity analysis, particularly screening is crucial for identifying influential input parameters. Kernel-based methods, such as the Hilbert-Schmidt Independence Criterion (HSIC), are valuable for analyzing dependencies between inputs and outputs. Implementing HSIC requires data from the original model, which leads to the need of efficient sampling strategies to limit the number of costly numerical simulations. While, for independent input variables, existing sampling methods like Latin Hypercube Sampling (LHS) are effective in estimating HSIC with reduced variance, incorporating dependence is challenging. This article introduces a novel LHS variant, quantization-based LHS (QLHS), which leverages Voronoi vector quantization to address dependent inputs. The method provides good coverage of the range of variations in the input variables. The article outlines expectation estimators based on QLHS in various dependency settings, demonstrating their unbiasedness. The method is applied to several models of growing complexities, first on simple examples to illustrate the theory, then on more complex environmental hydrological models, when the dependence is known or not, and with more and more interactive processes and factors. The last application is on the digital twin of a French vineyard catchment (Beaujolais region) to design a vegetative filter strip and reduce water, sediment, and pesticide transfers from the fields to the river. QLHS is used to compute HSIC measures and independence tests, demonstrating its usefulness, especially in the context of complex models.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2899","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2899","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical models are essential for comprehending intricate physical phenomena in different domains. To handle their complexity, sensitivity analysis, particularly screening is crucial for identifying influential input parameters. Kernel-based methods, such as the Hilbert-Schmidt Independence Criterion (HSIC), are valuable for analyzing dependencies between inputs and outputs. Implementing HSIC requires data from the original model, which leads to the need of efficient sampling strategies to limit the number of costly numerical simulations. While, for independent input variables, existing sampling methods like Latin Hypercube Sampling (LHS) are effective in estimating HSIC with reduced variance, incorporating dependence is challenging. This article introduces a novel LHS variant, quantization-based LHS (QLHS), which leverages Voronoi vector quantization to address dependent inputs. The method provides good coverage of the range of variations in the input variables. The article outlines expectation estimators based on QLHS in various dependency settings, demonstrating their unbiasedness. The method is applied to several models of growing complexities, first on simple examples to illustrate the theory, then on more complex environmental hydrological models, when the dependence is known or not, and with more and more interactive processes and factors. The last application is on the digital twin of a French vineyard catchment (Beaujolais region) to design a vegetative filter strip and reduce water, sediment, and pesticide transfers from the fields to the river. QLHS is used to compute HSIC measures and independence tests, demonstrating its usefulness, especially in the context of complex models.

基于量化的依赖输入拉丁超立方采样及其在环境模型敏感性分析中的应用
数值模型对于理解不同领域的复杂物理现象是必不可少的。为了处理它们的复杂性,敏感性分析,特别是筛选对于确定有影响的输入参数至关重要。基于核的方法,如Hilbert-Schmidt独立准则(HSIC),对于分析输入和输出之间的依赖关系很有价值。实现HSIC需要来自原始模型的数据,这就需要有效的采样策略来限制昂贵的数值模拟次数。而对于独立的输入变量,现有的采样方法,如拉丁超立方体采样(LHS),在减少方差的情况下可以有效地估计HSIC,但纳入相关性是一个挑战。本文介绍了一种新的LHS变体,基于量化的LHS (QLHS),它利用Voronoi矢量量化来处理相关输入。该方法很好地覆盖了输入变量的变化范围。本文概述了在各种依赖项设置中基于QLHS的期望估计器,展示了它们的无偏性。该方法应用于几个日益复杂的模型,首先是简单的例子来说明理论,然后是更复杂的环境水文模型,当依赖性已知或不知道,并且有越来越多的交互过程和因素。最后一个应用是法国葡萄园集水区(博若莱地区)的数字孪生,设计一个植物过滤带,减少水、沉积物和农药从田地转移到河流。QLHS用于计算HSIC度量和独立性测试,证明了它的实用性,特别是在复杂模型的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信