Is there a group structure on the Galois cohomology of a reductive group over a global field?

IF 0.5 4区 数学 Q3 MATHEMATICS
Mikhail Borovoi
{"title":"Is there a group structure on the Galois cohomology of a reductive group over a global field?","authors":"Mikhail Borovoi","doi":"10.1007/s00013-025-02118-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>K</i> be a global field, that is, a number field or a global function field. It is known that the answer to the question in the title over <i>K</i> is “Yes” when <i>K</i> has no real embeddings. We show that otherwise the answer is “No”. Namely, we show that when <i>K</i> is a number field admitting a real embedding, it is impossible to define a group structure on the first Galois cohomology sets <span>\\(\\textrm{H}^1\\hspace{-0.8pt}(K,G)\\)</span> for all reductive <i>K</i>-groups <i>G</i> in a functorial way.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 6","pages":"583 - 589"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02118-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02118-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let K be a global field, that is, a number field or a global function field. It is known that the answer to the question in the title over K is “Yes” when K has no real embeddings. We show that otherwise the answer is “No”. Namely, we show that when K is a number field admitting a real embedding, it is impossible to define a group structure on the first Galois cohomology sets \(\textrm{H}^1\hspace{-0.8pt}(K,G)\) for all reductive K-groups G in a functorial way.

在全局域上约化群的伽罗瓦上同调上是否存在群结构?
设K为全局域,即数字域或全局函数域。我们知道,当K没有真实嵌入时,题目K上的问题的答案是“是”。我们表明,否则答案是“否”。即,我们证明了当K是一个允许实嵌入的数域时,对于所有约化K群G,不可能用泛函的方式定义第一伽罗瓦上同集\(\textrm{H}^1\hspace{-0.8pt}(K,G)\)上的群结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信