Xi Chen, Jialing Xia, Jiangyi Li, Liu Yang, Yang Liu, Hao Zhang
{"title":"Experimental Study of Particle Deposition Distribution on the Vertical Wall Behind Near-Wall Heat Sources","authors":"Xi Chen, Jialing Xia, Jiangyi Li, Liu Yang, Yang Liu, Hao Zhang","doi":"10.1007/s41810-024-00249-1","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid and massive deposition of particles on the vertical wall behind near-wall heat sources is a common and important phenomenon. However, the distribution pattern of such particle deposition has not been clarified. To evaluate the effect of the near-wall heat source on the particle deposition distribution on the vertical wall, an experimental study focused on 0.3 μm, 0.5 μm, 1.0 μm, and 3.0 μm particles under 12 cases with varying temperatures and rotation angles of near-wall heat sources was conducted. The results reveal that particle deposition at the vertical center axis of the rear wall initially exhibits a substantial increase, followed by a subsequent reduction as the distance from the upper surface of the heat source is enhanced. Additionally, in regions that are symmetrically positioned relative to the near-wall heat source, arranged horizontally, the particle deposition pattern of particles of identical size displays a remarkable degree of similarity. The effect of the near-wall heat source rotation angle on particle deposition on the rear wall is also intertwined with factors such as particle size and the position within the rear wall region.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"9 2","pages":"127 - 139"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-024-00249-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid and massive deposition of particles on the vertical wall behind near-wall heat sources is a common and important phenomenon. However, the distribution pattern of such particle deposition has not been clarified. To evaluate the effect of the near-wall heat source on the particle deposition distribution on the vertical wall, an experimental study focused on 0.3 μm, 0.5 μm, 1.0 μm, and 3.0 μm particles under 12 cases with varying temperatures and rotation angles of near-wall heat sources was conducted. The results reveal that particle deposition at the vertical center axis of the rear wall initially exhibits a substantial increase, followed by a subsequent reduction as the distance from the upper surface of the heat source is enhanced. Additionally, in regions that are symmetrically positioned relative to the near-wall heat source, arranged horizontally, the particle deposition pattern of particles of identical size displays a remarkable degree of similarity. The effect of the near-wall heat source rotation angle on particle deposition on the rear wall is also intertwined with factors such as particle size and the position within the rear wall region.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.