Jianjun Sun , Defu Lin , Irfan Hussain , Lakmal Seneviratne , Shaoming He
{"title":"Position estimation and formation control using distance and partial state measurements","authors":"Jianjun Sun , Defu Lin , Irfan Hussain , Lakmal Seneviratne , Shaoming He","doi":"10.1016/j.automatica.2025.112374","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a distributed formation control strategy for multi-agent systems (MASs) and explores a position observer using distance measurements and partial state measurements. By leveraging infinitesimally rigid framework and matrix decomposition techniques, we pinpoint the position states that require direct measurements for satisfying local weak observability of MASs. Subsequently, by utilizing distance and partial position state measurements, we construct distributed observers to estimate positions in a global coordinate system encompassing all agents. The controller employs the gradient laws to preserve formation rigidity, facilitate collision avoidance, and ensure network connectivity. Additionally, proportional feedback is utilized to guide the agents toward desired global reference positions. Our analysis, based on the Lyapunov method, establishes the local asymptotic convergence of formation control and estimate errors, and derives lower bounds for control and observation feedback gains. To validate the effectiveness of our control method, we conduct some numerical simulations in a 3D space.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"178 ","pages":"Article 112374"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825002687","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a distributed formation control strategy for multi-agent systems (MASs) and explores a position observer using distance measurements and partial state measurements. By leveraging infinitesimally rigid framework and matrix decomposition techniques, we pinpoint the position states that require direct measurements for satisfying local weak observability of MASs. Subsequently, by utilizing distance and partial position state measurements, we construct distributed observers to estimate positions in a global coordinate system encompassing all agents. The controller employs the gradient laws to preserve formation rigidity, facilitate collision avoidance, and ensure network connectivity. Additionally, proportional feedback is utilized to guide the agents toward desired global reference positions. Our analysis, based on the Lyapunov method, establishes the local asymptotic convergence of formation control and estimate errors, and derives lower bounds for control and observation feedback gains. To validate the effectiveness of our control method, we conduct some numerical simulations in a 3D space.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.