On the constrained online convex optimization with feedback delay

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Heyan Huang, Ping Wu, Haolin Lu, Zhengyang Liu
{"title":"On the constrained online convex optimization with feedback delay","authors":"Heyan Huang,&nbsp;Ping Wu,&nbsp;Haolin Lu,&nbsp;Zhengyang Liu","doi":"10.1016/j.eswa.2025.127871","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the problem of online convex optimization (OCO) under feedback delay, where feedback for a decision is received after a delay, and long-term constraints, where constraints can be violated in intermediate iterations but must be satisfied over the long run. Existing approaches are primarily limited to fixed delay settings and general convex loss functions. In this paper, we employ a stricter metric based on cumulative constraint violations. We first propose a novel algorithm tailored for the fixed <span><math><mi>d</mi></math></span>-slot delay setting, achieving a regret bound of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>d</mi><mi>T</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> and a cumulative constraint violation of <span><math><mi>O</mi></math></span> (<span><math><msup><mrow><mi>T</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span>), demonstrating superior performance compared to existing results. Moreover, when the loss functions are strongly convex, the regret and violation bounds can be further reduced to <span><math><mi>O</mi></math></span> (<span><math><mrow><mi>d</mi><mo>ln</mo><mi>T</mi></mrow></math></span>) and <span><math><mi>O</mi></math></span> (<span><math><mrow><msqrt><mrow><mi>d</mi></mrow></msqrt><mo>ln</mo><mi>T</mi></mrow></math></span>), respectively. Additionally, we extend our algorithm to the more realistic re-indexed delay setting, achieving <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>d</mi><mi>T</mi></mrow></msqrt><mo>)</mo></mrow></mrow></math></span> regret and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> cumulative constraint violation. Under strong convexity, these bounds are further improved to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>ln</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msqrt><mo>ln</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mover><mrow><mi>d</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mo>max</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mi>T</mi><mo>]</mo></mrow></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> denotes the maximum delay.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"287 ","pages":"Article 127871"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425014939","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the problem of online convex optimization (OCO) under feedback delay, where feedback for a decision is received after a delay, and long-term constraints, where constraints can be violated in intermediate iterations but must be satisfied over the long run. Existing approaches are primarily limited to fixed delay settings and general convex loss functions. In this paper, we employ a stricter metric based on cumulative constraint violations. We first propose a novel algorithm tailored for the fixed d-slot delay setting, achieving a regret bound of O(dT) and a cumulative constraint violation of O (T14), demonstrating superior performance compared to existing results. Moreover, when the loss functions are strongly convex, the regret and violation bounds can be further reduced to O (dlnT) and O (dlnT), respectively. Additionally, we extend our algorithm to the more realistic re-indexed delay setting, achieving O(dT) regret and O(T14) cumulative constraint violation. Under strong convexity, these bounds are further improved to O(dˆlnT) and O(dˆlnT), where dˆ=maxt[T]dt denotes the maximum delay.
带反馈时滞的约束在线凸优化
我们研究了反馈延迟下的在线凸优化(OCO)问题,其中决策的反馈是在延迟后接收的,以及长期约束,其中约束可以在中间迭代中被违反,但必须在长期运行中得到满足。现有的方法主要局限于固定的延迟设置和一般的凸损失函数。在本文中,我们采用了基于累积约束违反的更严格的度量。我们首先提出了一种针对固定d槽延迟设置的新算法,实现了0 (dT)的遗憾界和0 (T14)的累积约束违反,与现有结果相比表现出了优越的性能。此外,当损失函数为强凸时,遗憾界和违反界可进一步缩减为O (dlnT)和O (dlnT)。此外,我们将算法扩展到更现实的重新索引延迟设置,实现了O(dT)遗憾和O(T14)累积约束违反。在强凸性条件下,进一步改进为O(d′lnT)和O(d′lnT),其中d′=maxt∈[T]dt表示最大时延。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信