Probabilistic intervals prediction based on adaptive regression with attention residual connections and covariance constraints

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Fan Zhang , Min Wang , Lin Li , Yepeng Liu , Hua Wang
{"title":"Probabilistic intervals prediction based on adaptive regression with attention residual connections and covariance constraints","authors":"Fan Zhang ,&nbsp;Min Wang ,&nbsp;Lin Li ,&nbsp;Yepeng Liu ,&nbsp;Hua Wang","doi":"10.1016/j.engappai.2025.111013","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel prediction interval method called Adaptive Regression with Attention Residual Connection and Covariance Constraint (AR-ARCC). By integrating Monte Carlo and Bayesian methods, we leverage the strengths of both to achieve a more flexible and accurate method for generating prediction intervals. Additionally, through the optimization of the loss function, introduction of penalty terms, and improvement of mean squared error calculations, the model’s performance in interval prediction tasks is enhanced. Finally, the integration of an interactive channel heterogeneous self-attention module, combined with residual blocks, enhances the modeling capability of the neural network. The comprehensive application of these methods results in superior performance of the model in handling uncertainty and local variations.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"156 ","pages":"Article 111013"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625010139","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel prediction interval method called Adaptive Regression with Attention Residual Connection and Covariance Constraint (AR-ARCC). By integrating Monte Carlo and Bayesian methods, we leverage the strengths of both to achieve a more flexible and accurate method for generating prediction intervals. Additionally, through the optimization of the loss function, introduction of penalty terms, and improvement of mean squared error calculations, the model’s performance in interval prediction tasks is enhanced. Finally, the integration of an interactive channel heterogeneous self-attention module, combined with residual blocks, enhances the modeling capability of the neural network. The comprehensive application of these methods results in superior performance of the model in handling uncertainty and local variations.
基于注意残差连接和协方差约束的自适应回归概率区间预测
本文介绍了一种新的预测区间方法——注意残差连接和协方差约束自适应回归(AR-ARCC)。通过整合蒙特卡罗和贝叶斯方法,我们利用两者的优势来实现更灵活和准确的方法来生成预测区间。此外,通过优化损失函数、引入惩罚项和改进均方误差计算,提高了模型在区间预测任务中的性能。最后,集成交互通道异构自关注模块,结合残差块,增强了神经网络的建模能力。这些方法的综合应用使模型在处理不确定性和局部变化方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信