Blaž Pšeničnik, Rene Mlinarič, Janez Brest, Borko Bošković
{"title":"Dual-step optimization for binary sequences with high merit factors","authors":"Blaž Pšeničnik, Rene Mlinarič, Janez Brest, Borko Bošković","doi":"10.1016/j.dsp.2025.105316","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of finding aperiodic low auto-correlation binary sequences (LABS) presents a significant computational challenge, particularly as the sequence length increases. Such sequences have important applications in communication engineering, physics, chemistry, and cryptography. This paper introduces a dual-step algorithm for long binary sequences with high merit factors. The first step employs a parallel algorithm utilizing skew-symmetry and restriction classes to generate sequence candidates with merit factors above a predefined threshold. The second step uses a priority queue algorithm to refine these candidates further, searching the entire search space unrestrictedly. By combining GPU-based parallel computing and dual-step optimization, our approach has successfully identified best-known binary sequences for all lengths ranging from 450 to 527, with the exception of length 518, where the previous best-known merit factor value was matched with a different sequence. This hybrid method significantly outperforms traditional exhaustive and stochastic search methods, offering an efficient solution for finding long sequences with good merit factors.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"165 ","pages":"Article 105316"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425003380","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of finding aperiodic low auto-correlation binary sequences (LABS) presents a significant computational challenge, particularly as the sequence length increases. Such sequences have important applications in communication engineering, physics, chemistry, and cryptography. This paper introduces a dual-step algorithm for long binary sequences with high merit factors. The first step employs a parallel algorithm utilizing skew-symmetry and restriction classes to generate sequence candidates with merit factors above a predefined threshold. The second step uses a priority queue algorithm to refine these candidates further, searching the entire search space unrestrictedly. By combining GPU-based parallel computing and dual-step optimization, our approach has successfully identified best-known binary sequences for all lengths ranging from 450 to 527, with the exception of length 518, where the previous best-known merit factor value was matched with a different sequence. This hybrid method significantly outperforms traditional exhaustive and stochastic search methods, offering an efficient solution for finding long sequences with good merit factors.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,