Glaucoma identification with retinal fundus images using deep learning: Systematic review

Q1 Medicine
Dulani Meedeniya , Thisara Shyamalee , Gilbert Lim , Pratheepan Yogarajah
{"title":"Glaucoma identification with retinal fundus images using deep learning: Systematic review","authors":"Dulani Meedeniya ,&nbsp;Thisara Shyamalee ,&nbsp;Gilbert Lim ,&nbsp;Pratheepan Yogarajah","doi":"10.1016/j.imu.2025.101644","DOIUrl":null,"url":null,"abstract":"<div><div>Glaucoma is a leading cause of blindness, affecting millions of people worldwide. It is a chronic eye condition that damages the optic nerve and, if left untreated, can lead to vision loss and a decreased quality of life. Therefore, there is a need to explore practical and reliable mechanisms for glaucoma identification. This study systematically reviews deep-learning approaches for glaucoma identification using retinal fundus images from 2018 to 2024. Compared to existing survey studies, we cover the latest research, including several public retinal fundus image datasets, and focus on segmentation, classification based on convolutional neural networks and vision transformers, and explainability. The findings of this study, including comparisons of existing methods and key insights, will assist researchers and developers in identifying the most suitable techniques for glaucoma detection.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"56 ","pages":"Article 101644"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is a leading cause of blindness, affecting millions of people worldwide. It is a chronic eye condition that damages the optic nerve and, if left untreated, can lead to vision loss and a decreased quality of life. Therefore, there is a need to explore practical and reliable mechanisms for glaucoma identification. This study systematically reviews deep-learning approaches for glaucoma identification using retinal fundus images from 2018 to 2024. Compared to existing survey studies, we cover the latest research, including several public retinal fundus image datasets, and focus on segmentation, classification based on convolutional neural networks and vision transformers, and explainability. The findings of this study, including comparisons of existing methods and key insights, will assist researchers and developers in identifying the most suitable techniques for glaucoma detection.

Abstract Image

利用深度学习识别视网膜眼底图像青光眼:系统综述
青光眼是导致失明的主要原因,影响着全世界数百万人。这是一种慢性眼病,会损害视神经,如果不及时治疗,可能导致视力丧失和生活质量下降。因此,有必要探索实用可靠的青光眼鉴别机制。本研究系统回顾了2018 - 2024年利用视网膜眼底图像进行青光眼识别的深度学习方法。与现有的调查研究相比,我们涵盖了最新的研究,包括几个公开的视网膜眼底图像数据集,并重点研究了基于卷积神经网络和视觉变换的分割、分类和可解释性。这项研究的发现,包括对现有方法的比较和关键见解,将有助于研究人员和开发人员确定最适合青光眼检测的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信