Bipartite synchronization of stochastic complex networks with time-varying delays and multi-links

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dong Hou, Xuelin Bai, Xin Zhao, Wenxue Li
{"title":"Bipartite synchronization of stochastic complex networks with time-varying delays and multi-links","authors":"Dong Hou,&nbsp;Xuelin Bai,&nbsp;Xin Zhao,&nbsp;Wenxue Li","doi":"10.1016/j.chaos.2025.116530","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a novel model to achieve bipartite leader-following synchronization of stochastic complex networks characterized by time-varying delays and multi-links, through the use of negative feedback control. Utilizing graph theory and the Lyapunov method, we develop global Lyapunov functions for the error system and derive new sufficient conditions for both mean-square exponential bipartite synchronization and almost sure exponential bipartite synchronization between the leader node and the follower nodes. These conditions are closely related to the topological properties of the complex networks, offering new insights and methodologies for synchronization control and stability analysis in stochastic complex networks. Finally, we validate the theoretical results by applying them to coupled Chua’s circuits and confirming their effectiveness and practicality through numerical simulations.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":"Article 116530"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005430","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a novel model to achieve bipartite leader-following synchronization of stochastic complex networks characterized by time-varying delays and multi-links, through the use of negative feedback control. Utilizing graph theory and the Lyapunov method, we develop global Lyapunov functions for the error system and derive new sufficient conditions for both mean-square exponential bipartite synchronization and almost sure exponential bipartite synchronization between the leader node and the follower nodes. These conditions are closely related to the topological properties of the complex networks, offering new insights and methodologies for synchronization control and stability analysis in stochastic complex networks. Finally, we validate the theoretical results by applying them to coupled Chua’s circuits and confirming their effectiveness and practicality through numerical simulations.
时变时滞多链路随机复杂网络的二部同步
本文介绍了一种利用负反馈控制实现时变时滞多链路随机复杂网络的二部领导跟随同步的新模型。利用图论和Lyapunov方法,给出了误差系统的全局Lyapunov函数,并给出了领导节点和跟随节点均方指数二部同步和几乎确定指数二部同步的新充分条件。这些条件与复杂网络的拓扑特性密切相关,为随机复杂网络的同步控制和稳定性分析提供了新的见解和方法。最后,我们将理论结果应用于耦合蔡氏电路,并通过数值模拟验证了理论结果的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信