Ning Zhao , Fu-Chen Wang , Hao-Ran Zhao , Ling-Fa Xue , Wen-Lin Xiao
{"title":"Virtual Surgical Planning/3D Printing for the Management of Severely Comminuted Mandibular Fractures","authors":"Ning Zhao , Fu-Chen Wang , Hao-Ran Zhao , Ling-Fa Xue , Wen-Lin Xiao","doi":"10.1016/j.irbm.2025.100894","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Severely comminuted mandibular fractures present significant challenges due to the loss of spatial orientation of bone fragments, making precise reduction difficult. Traditional methods rely heavily on the surgeon's experience, often leading to suboptimal outcomes. Virtual surgical planning (VSP) and 3D printing have emerged as innovative tools to enhance surgical precision and efficiency in complex maxillofacial cases. This study aimed to evaluate the efficacy of VSP and 3D printing in achieving accurate reduction and fixation of severely comminuted mandibular fractures, using customized surgical guides and pre-bent titanium plates.</div></div><div><h3>Material and Methods</h3><div>Five patients with severely comminuted mandibular fractures were included. Preoperative computed tomography (CT) data were imported into MIMICS software for VSP, where fracture fragments were virtually aligned. Short-segment drilling guides (SSDGs) and a horseshoe-shaped reduction guide (HSRG) were designed using 3-Matic software and 3D printed. Intraoperatively, SSDGs were used to drill screw holes, and HSRG, along with pre-bent titanium plates, facilitated precise reduction and fixation of bone fragments. Postoperative outcomes were assessed using 3D CT scans, and mandibular parameters were compared between preoperative VSP and postoperative data.</div></div><div><h3>Results</h3><div>All five patients achieved successful reduction with satisfactory mandibular contour and occlusal relationships at three months postoperatively. There were no significant differences in mandibular parameters (CoD, GoL-GoR, ΔGo-Me, ∠GoL-Me-GoR, and Δ∠Co-Go-Me) between preoperative VSP and postoperative measurements (p > 0.05). The average number of fracture fragments per patient was 8.8, with an average operation time of 169 minutes.</div></div><div><h3>Conclusions</h3><div>VSP combined with 3D printing offers a reliable and precise method for managing severely comminuted mandibular fractures. This approach reduces surgical complexity, enhances accuracy, and provides excellent functional and aesthetic outcomes, making it a valuable tool for complex mandibular fracture management.</div></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"46 4","pages":"Article 100894"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031825000193","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Severely comminuted mandibular fractures present significant challenges due to the loss of spatial orientation of bone fragments, making precise reduction difficult. Traditional methods rely heavily on the surgeon's experience, often leading to suboptimal outcomes. Virtual surgical planning (VSP) and 3D printing have emerged as innovative tools to enhance surgical precision and efficiency in complex maxillofacial cases. This study aimed to evaluate the efficacy of VSP and 3D printing in achieving accurate reduction and fixation of severely comminuted mandibular fractures, using customized surgical guides and pre-bent titanium plates.
Material and Methods
Five patients with severely comminuted mandibular fractures were included. Preoperative computed tomography (CT) data were imported into MIMICS software for VSP, where fracture fragments were virtually aligned. Short-segment drilling guides (SSDGs) and a horseshoe-shaped reduction guide (HSRG) were designed using 3-Matic software and 3D printed. Intraoperatively, SSDGs were used to drill screw holes, and HSRG, along with pre-bent titanium plates, facilitated precise reduction and fixation of bone fragments. Postoperative outcomes were assessed using 3D CT scans, and mandibular parameters were compared between preoperative VSP and postoperative data.
Results
All five patients achieved successful reduction with satisfactory mandibular contour and occlusal relationships at three months postoperatively. There were no significant differences in mandibular parameters (CoD, GoL-GoR, ΔGo-Me, ∠GoL-Me-GoR, and Δ∠Co-Go-Me) between preoperative VSP and postoperative measurements (p > 0.05). The average number of fracture fragments per patient was 8.8, with an average operation time of 169 minutes.
Conclusions
VSP combined with 3D printing offers a reliable and precise method for managing severely comminuted mandibular fractures. This approach reduces surgical complexity, enhances accuracy, and provides excellent functional and aesthetic outcomes, making it a valuable tool for complex mandibular fracture management.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…