Gain margin constrained H2 and H∞ optimal Positive Position Feedback control for piezoelectric vibration suppression

IF 4.3 2区 工程技术 Q1 ACOUSTICS
Bram Seinhorst, Marijn Nijenhuis, Wouter Hakvoort
{"title":"Gain margin constrained H2 and H∞ optimal Positive Position Feedback control for piezoelectric vibration suppression","authors":"Bram Seinhorst,&nbsp;Marijn Nijenhuis,&nbsp;Wouter Hakvoort","doi":"10.1016/j.jsv.2025.119165","DOIUrl":null,"url":null,"abstract":"<div><div>Positive Position Feedback (PPF) is a simple resonant control technique widely used to suppress vibrations. Several different tuning methods exist for this type of controller. However, the previously developed tuning methods often rely on simplifications and assume that the system can be reduced to a single mass spring system that exhibits roll-off after the resonance that is to be suppressed. This assumption is not generally valid as the response may also be influenced by a higher frequency resonance, or may not exhibit roll-off at all. This happens for example in systems with collocated piezoelectric sensing and actuation. Furthermore, robustness against gain variations and limited available actuation power are difficult to take into account with the available tuning methods. This paper presents the analytical solution to the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> optimal tuning problem and a reliable numerical solution to the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> optimal tuning problem of PPF controllers for a general class of systems. The system model consists of a second order transfer with direct feed-through terms that are able to capture the response close to an undamped resonance accurately, even if it is influenced by higher frequency modes or if the system does not exhibit roll-off. The method leaves the open loop gain as a free tuning parameter, which can be set to adhere to a gain margin constraint or limit the utilised actuation power. Furthermore, experimental results are included to demonstrate the effectiveness, robustness and flexibility of the proposed optimal tuning approach.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"615 ","pages":"Article 119165"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25002391","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Positive Position Feedback (PPF) is a simple resonant control technique widely used to suppress vibrations. Several different tuning methods exist for this type of controller. However, the previously developed tuning methods often rely on simplifications and assume that the system can be reduced to a single mass spring system that exhibits roll-off after the resonance that is to be suppressed. This assumption is not generally valid as the response may also be influenced by a higher frequency resonance, or may not exhibit roll-off at all. This happens for example in systems with collocated piezoelectric sensing and actuation. Furthermore, robustness against gain variations and limited available actuation power are difficult to take into account with the available tuning methods. This paper presents the analytical solution to the H2 optimal tuning problem and a reliable numerical solution to the H optimal tuning problem of PPF controllers for a general class of systems. The system model consists of a second order transfer with direct feed-through terms that are able to capture the response close to an undamped resonance accurately, even if it is influenced by higher frequency modes or if the system does not exhibit roll-off. The method leaves the open loop gain as a free tuning parameter, which can be set to adhere to a gain margin constraint or limit the utilised actuation power. Furthermore, experimental results are included to demonstrate the effectiveness, robustness and flexibility of the proposed optimal tuning approach.
基于增益裕度约束的H2和H∞最优正反馈控制的压电振动抑制
正位置反馈(PPF)是一种简单的谐振控制技术,广泛用于抑制振动。对于这种类型的控制器存在几种不同的调优方法。然而,以前开发的调谐方法往往依赖于简化,并假设系统可以简化为单个质量弹簧系统,该系统在要抑制的共振后表现出滚转。这种假设通常是无效的,因为响应也可能受到更高频率共振的影响,或者可能根本不表现出滚降。例如,这种情况发生在具有并联压电传感和驱动的系统中。此外,现有的调谐方法很难考虑增益变化的鲁棒性和有限的可用驱动功率。本文给出了一类一般系统的PPF控制器H2最优整定问题的解析解和H∞最优整定问题的可靠数值解。系统模型由二阶传递和直接馈通项组成,即使它受到更高频率模式的影响或系统没有出现滚降,也能够准确地捕获接近无阻尼共振的响应。该方法将开环增益作为自由调谐参数,可以将其设置为坚持增益裕度约束或限制所使用的驱动功率。实验结果验证了该方法的有效性、鲁棒性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信