Nan Sheng,Yunzhi Liu,Ling Gao,Lei Wang,Chenxu Si,Lan Huang,Yan Wang
{"title":"Deep-Learning-Based Integration of Sequence and Structure Information for Efficiently Predicting miRNA-Drug Associations.","authors":"Nan Sheng,Yunzhi Liu,Ling Gao,Lei Wang,Chenxu Si,Lan Huang,Yan Wang","doi":"10.1021/acs.jcim.5c00038","DOIUrl":null,"url":null,"abstract":"Extensive research has shown that microRNAs (miRNAs) play a crucial role in cancer progression, treatment, and drug resistance. They have been recognized as promising potential therapeutic targets for overcoming drug resistance in cancer treatment. However, limited attention has been paid to predicting the association between miRNAs and drugs by computational methods. Existing approaches typically focus on constructing miRNA-drug interaction graphs, which may result in their performance being limited by interaction density. In this work, we propose a novel deep learning method that integrates sequence and structural information to infer miRNA-drug associations (MDAs), called DLST-MDA. This approach innovates by utilizing attribute information on miRNAs and drugs instead of relying on the commonly used interaction graph information. Specifically, considering the sequence lengths of miRNAs and drugs, DLST-MDA employs multiscale convolutional neural network (CNN) to learn sequence embeddings at different granularity levels from miRNA and drug sequences. Additionally, it leverages the power of graph neural networks to capture structural information from drug molecular graphs, providing a more representational analysis of the drug features. To evaluate DLST-MDA's effectiveness, we manually constructed a benchmark data set for various experiments based on the latest databases. Results indicate that DLST-MDA performs better than other state-of-the-art methods. Furthermore, case studies of three common anticancer drugs can evidence their usefulness in discovering novel MDAs. The data and source code are released at https://github.com/sheng-n/DLST-MDA.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"41 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00038","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research has shown that microRNAs (miRNAs) play a crucial role in cancer progression, treatment, and drug resistance. They have been recognized as promising potential therapeutic targets for overcoming drug resistance in cancer treatment. However, limited attention has been paid to predicting the association between miRNAs and drugs by computational methods. Existing approaches typically focus on constructing miRNA-drug interaction graphs, which may result in their performance being limited by interaction density. In this work, we propose a novel deep learning method that integrates sequence and structural information to infer miRNA-drug associations (MDAs), called DLST-MDA. This approach innovates by utilizing attribute information on miRNAs and drugs instead of relying on the commonly used interaction graph information. Specifically, considering the sequence lengths of miRNAs and drugs, DLST-MDA employs multiscale convolutional neural network (CNN) to learn sequence embeddings at different granularity levels from miRNA and drug sequences. Additionally, it leverages the power of graph neural networks to capture structural information from drug molecular graphs, providing a more representational analysis of the drug features. To evaluate DLST-MDA's effectiveness, we manually constructed a benchmark data set for various experiments based on the latest databases. Results indicate that DLST-MDA performs better than other state-of-the-art methods. Furthermore, case studies of three common anticancer drugs can evidence their usefulness in discovering novel MDAs. The data and source code are released at https://github.com/sheng-n/DLST-MDA.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.