Vasculature-informed spatial smoothing of white matter functional magnetic resonance imaging.

Adam M Saunders, Michael E Kim, Kurt G Schilling, John C Gore, Bennett A Landman, Yurui Gao
{"title":"Vasculature-informed spatial smoothing of white matter functional magnetic resonance imaging.","authors":"Adam M Saunders, Michael E Kim, Kurt G Schilling, John C Gore, Bennett A Landman, Yurui Gao","doi":"10.1117/12.3047140","DOIUrl":null,"url":null,"abstract":"<p><p>Blood oxygenation level-dependent (BOLD) signals in white matter in the brain are anisotropically oriented, so that typical isotropic Gaussian spatial smoothing (GSS) of functional magnetic resonance images (fMRI) blurs across anatomical distributions. Abramian et al. developed a graph signal processing approach to smooth fMRI data along white matter fibers using diffusion MRI (diffusion-informed spatial smoothing, DSS). BOLD signals are modulated by the volume and oxygenation of blood carried by the vasculature, so we extend this method to provide vasculature-informed spatial smoothing (VSS). We collected susceptibility-weighted images and applied a Frangi filter to identify the peak vasculature direction in each voxel, alongside co-registered diffusion MRI and resting-state fMRI, weighting the VSS graph by the agreement of the vasculature directions aligned onto the graph's edges. We acquired resting-state fMRI at 7T using a repetition time of 1.5 seconds and 400 time points. Applying the DSS and VSS filters significantly increased the local functional connectivity measured using regional homogeneity (ReHo) compared to GSS (<i>p</i> < 0.01 using a paired <i>t</i>-test), but not when comparing DSS and VSS (<i>p</i> = 0.06). Independent component analysis resulted in less noisy components that agree better with labels from a white matter atlas with a significantly higher Dice score from the VSS filter compared to GSS (<i>p</i> < 0.05 using the Mann-Whitney U-test), and the VSS filter and DSS filter performed comparably (<i>p</i> = 0.06). In this pilot analysis, we find that fMRI data smoothed using VSS are comparable to results generated using DSS. The filtering code is available online (https://github.com/MASILab/vss_fmri).</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13406 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3047140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blood oxygenation level-dependent (BOLD) signals in white matter in the brain are anisotropically oriented, so that typical isotropic Gaussian spatial smoothing (GSS) of functional magnetic resonance images (fMRI) blurs across anatomical distributions. Abramian et al. developed a graph signal processing approach to smooth fMRI data along white matter fibers using diffusion MRI (diffusion-informed spatial smoothing, DSS). BOLD signals are modulated by the volume and oxygenation of blood carried by the vasculature, so we extend this method to provide vasculature-informed spatial smoothing (VSS). We collected susceptibility-weighted images and applied a Frangi filter to identify the peak vasculature direction in each voxel, alongside co-registered diffusion MRI and resting-state fMRI, weighting the VSS graph by the agreement of the vasculature directions aligned onto the graph's edges. We acquired resting-state fMRI at 7T using a repetition time of 1.5 seconds and 400 time points. Applying the DSS and VSS filters significantly increased the local functional connectivity measured using regional homogeneity (ReHo) compared to GSS (p < 0.01 using a paired t-test), but not when comparing DSS and VSS (p = 0.06). Independent component analysis resulted in less noisy components that agree better with labels from a white matter atlas with a significantly higher Dice score from the VSS filter compared to GSS (p < 0.05 using the Mann-Whitney U-test), and the VSS filter and DSS filter performed comparably (p = 0.06). In this pilot analysis, we find that fMRI data smoothed using VSS are comparable to results generated using DSS. The filtering code is available online (https://github.com/MASILab/vss_fmri).

白质功能磁共振成像血管信息空间平滑。
脑白质中的血氧水平依赖(BOLD)信号是各向异性取向的,因此功能磁共振成像(fMRI)的典型各向同性高斯空间平滑(GSS)模糊了解剖分布。Abramian等人开发了一种图形信号处理方法,利用扩散MRI (diffusion-informed spatial smoothing, DSS)沿白质纤维平滑fMRI数据。BOLD信号由脉管系统携带的血液的体积和氧合调节,因此我们扩展了这种方法来提供脉管系统信息空间平滑(VSS)。我们收集了敏感性加权图像,并应用Frangi滤波器来识别每个体素中的峰值血管方向,以及共同注册的弥散MRI和静息状态fMRI,通过对齐到图边缘的血管方向的一致性来加权VSS图。我们在7T时使用1.5秒的重复时间和400个时间点获得静息状态fMRI。与GSS相比,应用DSS和VSS滤波器显著增加了使用区域均匀性(ReHo)测量的局部功能连通性(使用配对t检验p < 0.01),但在比较DSS和VSS时没有(p = 0.06)。独立成分分析结果表明,与GSS相比,VSS滤波器的Dice得分显著高于GSS(使用Mann-Whitney u检验p < 0.05), VSS滤波器和DSS滤波器的表现相当(p = 0.06),噪声较少的成分与白质图谱的标签更一致。在这个试点分析中,我们发现使用VSS平滑的fMRI数据与使用DSS生成的结果相当。过滤代码可在网上获得(https://github.com/MASILab/vss_fmri)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信