Distinct microbiomes underlie divergent responses of methane emissions from diverse wetland soils to oxygen shifts.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-04-14 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf063
Linta Reji, Jianshu Duan, Satish C B Myneni, Xinning Zhang
{"title":"Distinct microbiomes underlie divergent responses of methane emissions from diverse wetland soils to oxygen shifts.","authors":"Linta Reji, Jianshu Duan, Satish C B Myneni, Xinning Zhang","doi":"10.1093/ismeco/ycaf063","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrological shifts in wetlands, a globally important methane (CH<sub>4</sub>) source, are critical constraints on CH<sub>4</sub> emissions and carbon-climate feedbacks. A limited understanding of how hydrologically driven oxygen (O<sub>2</sub>) variability affects microbial CH<sub>4</sub> cycling in diverse wetlands makes wetland CH<sub>4</sub> emissions uncertain. Transient O<sub>2</sub> exposure significantly stimulated anoxic CH<sub>4</sub> production in incubations of <i>Sphagnum</i> peat from a temperate bog by enriching for polyphenol oxidizers and polysaccharide degraders, enhancing substrate flow toward methanogenesis under subsequent anoxic conditions. To assess whether shifts in soil microbiome structure and function operate similarly across wetland types, here we examined the sensitivity of different wetland soils to transient oxygenation. In slurry incubations of <i>Sphagnum</i> peat from a minerotrophic fen, and sediments from a freshwater marsh and saltmarsh, we examined temporal shifts in microbiomes coupled with geochemical characterization of slurries and incubation headspaces. Oxygenation did not affect microbiome structure and anoxic CH<sub>4</sub> production in mineral-rich fen-origin peat and freshwater marsh soils. Key taxa linked to O<sub>2</sub>-stimulated CH<sub>4</sub> production in the bog-origin peat were notably rare in the fen-origin peat, supporting microbiome structure as a primary determinant of wetland response to O<sub>2</sub> shifts. In contrast to freshwater wetland experiments, saltmarsh geochemistry-particularly pH-and microbiome structure were persistently and significantly altered postoxygenation, albeit with no significant impact on greenhouse gas emissions. These divergent responses suggest wetlands may be differentially resistant to O<sub>2</sub> fluctuations. With climate change driving greater O<sub>2</sub> variability in wetlands, our results inform mechanisms of wetland resistance and highlight microbiome structure as a potential resiliency biomarker.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf063"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrological shifts in wetlands, a globally important methane (CH4) source, are critical constraints on CH4 emissions and carbon-climate feedbacks. A limited understanding of how hydrologically driven oxygen (O2) variability affects microbial CH4 cycling in diverse wetlands makes wetland CH4 emissions uncertain. Transient O2 exposure significantly stimulated anoxic CH4 production in incubations of Sphagnum peat from a temperate bog by enriching for polyphenol oxidizers and polysaccharide degraders, enhancing substrate flow toward methanogenesis under subsequent anoxic conditions. To assess whether shifts in soil microbiome structure and function operate similarly across wetland types, here we examined the sensitivity of different wetland soils to transient oxygenation. In slurry incubations of Sphagnum peat from a minerotrophic fen, and sediments from a freshwater marsh and saltmarsh, we examined temporal shifts in microbiomes coupled with geochemical characterization of slurries and incubation headspaces. Oxygenation did not affect microbiome structure and anoxic CH4 production in mineral-rich fen-origin peat and freshwater marsh soils. Key taxa linked to O2-stimulated CH4 production in the bog-origin peat were notably rare in the fen-origin peat, supporting microbiome structure as a primary determinant of wetland response to O2 shifts. In contrast to freshwater wetland experiments, saltmarsh geochemistry-particularly pH-and microbiome structure were persistently and significantly altered postoxygenation, albeit with no significant impact on greenhouse gas emissions. These divergent responses suggest wetlands may be differentially resistant to O2 fluctuations. With climate change driving greater O2 variability in wetlands, our results inform mechanisms of wetland resistance and highlight microbiome structure as a potential resiliency biomarker.

不同的微生物群是不同湿地土壤甲烷排放对氧转移的不同响应的基础。
湿地是全球重要的甲烷(CH4)来源,其水文变化是CH4排放和碳-气候反馈的关键制约因素。对水文驱动的氧(O2)变化如何影响不同湿地微生物CH4循环的了解有限,使得湿地CH4排放不确定。短暂的氧气暴露通过富集多酚氧化剂和多糖降解剂,显著刺激了来自温带沼泽的泥炭培养的缺氧CH4产量,增强了在随后的缺氧条件下向甲烷生成的底物流动。为了评估不同湿地类型土壤微生物群结构和功能的变化是否相似,我们研究了不同湿地土壤对瞬态氧化的敏感性。通过对来自营养化沼泽的泥炭泥炭和来自淡水沼泽和盐沼的沉积物进行浆液孵育,我们研究了微生物组的时间变化,以及浆液和孵育顶空的地球化学特征。在富含矿物质的泥炭和淡水沼泽土壤中,氧化不影响微生物组结构和缺氧CH4的产生。沼泽源泥炭中与O2刺激甲烷生成相关的关键类群在沼泽源泥炭中非常罕见,这支持了微生物群结构是湿地对O2转移响应的主要决定因素。与淡水湿地实验相比,盐沼地球化学(特别是ph)和微生物组结构在氧合后持续而显著地改变,尽管对温室气体排放没有显著影响。这些不同的反应表明,湿地对氧气波动的抵抗力可能不同。随着气候变化推动湿地氧气变异性的增加,我们的研究结果揭示了湿地抗性的机制,并强调了微生物组结构作为潜在的弹性生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信