Risk prediction for ALS using semi-competing risk models with applications to the ALS Natural History Consortium dataset.

IF 2.8
Andres Arguedas, David Schneck, Erjia Cui, Annette Xenopoulos-Oddsson, Ximena Arcila-Londono, Christian Lunetta, James Wymer, Nicholas Olney, Kelly Gwathmey, Senda Ajroud-Driss, Ghazala Hayat, Terry Heiman-Patterson, Federica Cerri, Christina Fournier, Jonathan Glass, Alex Sherman, David Walk, Mark Fiecas
{"title":"Risk prediction for ALS using semi-competing risk models with applications to the ALS Natural History Consortium dataset.","authors":"Andres Arguedas, David Schneck, Erjia Cui, Annette Xenopoulos-Oddsson, Ximena Arcila-Londono, Christian Lunetta, James Wymer, Nicholas Olney, Kelly Gwathmey, Senda Ajroud-Driss, Ghazala Hayat, Terry Heiman-Patterson, Federica Cerri, Christina Fournier, Jonathan Glass, Alex Sherman, David Walk, Mark Fiecas","doi":"10.1080/21678421.2025.2500359","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background and objectives</i>: Important landmarks in progression of amyotrophic lateral sclerosis (ALS) can occur prior to death. Predictive models for the risk of these events can assist in clinical trial design and personal planning. We propose a predictive model, using a semi-competing risks modeling approach, for five important disease progression landmarks in ALS. <i>Methods</i>: Data on 1508 participants from the ALS Natural History Consortium (ALS NHC) were used, including baseline characteristics and the ALS Functional Rating Scale-Revised (ALSFRS-R) score collected at clinic visits. A semi-competing risks modeling approach was used to study the time to disease progression landmarks, accounting for the possibility of death. Specifically, time to gastrostomy, use of noninvasive ventilation (NIV), continuous use of NIV, loss of speech, and loss of ambulation were chosen and modeled individually. To measure the predictive capabilities of the model, the integrated Brier score was computed for each model using cross-validation for the NHC data. Data from Emory University were used for external validation of the models. <i>Results</i>: We present model results using gastrostomy as the intermediate outcome. Similar trends in disease progression groups were found across all model pathways. Diagnostic delay, age, and site of onset were the most important covariates. Predictive metrics in both internal and external validation are presented across all models and for different pathways. <i>Conclusion</i>: Semi-competing risks modeling is a flexible approach to studying disease progression. The models have good predictive capabilities across different outcomes and pathways. These are replicated in the external validation dataset.</p>","PeriodicalId":72184,"journal":{"name":"Amyotrophic lateral sclerosis & frontotemporal degeneration","volume":" ","pages":"550-557"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amyotrophic lateral sclerosis & frontotemporal degeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21678421.2025.2500359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Important landmarks in progression of amyotrophic lateral sclerosis (ALS) can occur prior to death. Predictive models for the risk of these events can assist in clinical trial design and personal planning. We propose a predictive model, using a semi-competing risks modeling approach, for five important disease progression landmarks in ALS. Methods: Data on 1508 participants from the ALS Natural History Consortium (ALS NHC) were used, including baseline characteristics and the ALS Functional Rating Scale-Revised (ALSFRS-R) score collected at clinic visits. A semi-competing risks modeling approach was used to study the time to disease progression landmarks, accounting for the possibility of death. Specifically, time to gastrostomy, use of noninvasive ventilation (NIV), continuous use of NIV, loss of speech, and loss of ambulation were chosen and modeled individually. To measure the predictive capabilities of the model, the integrated Brier score was computed for each model using cross-validation for the NHC data. Data from Emory University were used for external validation of the models. Results: We present model results using gastrostomy as the intermediate outcome. Similar trends in disease progression groups were found across all model pathways. Diagnostic delay, age, and site of onset were the most important covariates. Predictive metrics in both internal and external validation are presented across all models and for different pathways. Conclusion: Semi-competing risks modeling is a flexible approach to studying disease progression. The models have good predictive capabilities across different outcomes and pathways. These are replicated in the external validation dataset.

利用半竞争风险模型预测ALS的风险,并应用于ALS自然历史联盟数据集。
背景和目的:肌萎缩性侧索硬化症(ALS)进展的重要标志可能发生在死亡之前。这些事件风险的预测模型可以帮助临床试验设计和个人规划。我们提出了一个预测模型,使用半竞争风险建模方法,为ALS的五个重要疾病进展标志。方法:使用来自ALS自然历史联盟(ALS NHC)的1508名参与者的数据,包括基线特征和门诊就诊时收集的ALS功能评定量表-修订版(ALSFRS-R)评分。采用半竞争风险建模方法来研究疾病进展里程碑的时间,考虑死亡的可能性。具体来说,选择胃造口术的时间、使用无创通气(NIV)、持续使用无创通气、语言丧失和行动丧失分别进行建模。为了测量模型的预测能力,对NHC数据进行交叉验证,计算每个模型的综合Brier评分。来自Emory大学的数据用于模型的外部验证。结果:我们给出了以胃造口术作为中间结果的模型结果。在所有模型通路中,疾病进展组都发现了类似的趋势。诊断延迟、年龄和发病部位是最重要的协变量。内部和外部验证中的预测指标跨所有模型和不同路径呈现。结论:半竞争风险模型是研究疾病进展的灵活方法。这些模型对不同的结果和路径具有良好的预测能力。这些将在外部验证数据集中复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信