{"title":"3D-ΔΔG: A Dual-Channel Prediction Model for Protein-Protein Binding Affinity Changes Following Mutation Based on Protein 3D Structures.","authors":"Yuxiang Wang, Yibo Zhu, Xiumin Shi, Lu Wang","doi":"10.1002/prot.26837","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions are crucial for cellular regulation, antigen-antibody interactions, and other vital processes within living organisms. However, mutations in amino acid residues have the potential to induce changes in protein-protein binding affinity (ΔΔG), which may contribute to the onset and progression of disease. Existing methods for predicting ΔΔG use either protein sequence information or structural data. Furthermore, some methods are only applicable to single-point mutation cases. To address these limitations, we introduce a ΔΔG predictor that can handle complex scenarios involving multipoint mutations. In this investigation, a dual-channel deep learning model three-dimensional (3D)-ΔΔG is introduced, which is designed to predict ΔΔG by combining mutation information from side chain sequences and 3D structures. The proposed model employs a pre-trained protein language model to encode the side-chain amino acid sequence. A graph attention network is deployed to handle the graph representation of proteins simultaneously. Finally, a dual-channel processing module is implemented to facilitate depth fusion and extraction of both sequence and structural features. The model effectively captures the intricate alterations occurring pre- and post-protein mutation by integrating both sequence and 3D structural information. Results on the single-point mutation data set demonstrate a substantial improvement compared to state-of-the-art models. More significantly, 3D-ΔΔG exhibits superior performance when evaluated on the mixed mutation data sets, SKEMPIv1 and SKEMPIv2. The high level of agreement between the computationally predicted ΔΔG values and the experimentally determined values illustrates the potential of the 3D-ΔΔG model as an effective pre-screening tool in protein design and engineering.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26837","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-protein interactions are crucial for cellular regulation, antigen-antibody interactions, and other vital processes within living organisms. However, mutations in amino acid residues have the potential to induce changes in protein-protein binding affinity (ΔΔG), which may contribute to the onset and progression of disease. Existing methods for predicting ΔΔG use either protein sequence information or structural data. Furthermore, some methods are only applicable to single-point mutation cases. To address these limitations, we introduce a ΔΔG predictor that can handle complex scenarios involving multipoint mutations. In this investigation, a dual-channel deep learning model three-dimensional (3D)-ΔΔG is introduced, which is designed to predict ΔΔG by combining mutation information from side chain sequences and 3D structures. The proposed model employs a pre-trained protein language model to encode the side-chain amino acid sequence. A graph attention network is deployed to handle the graph representation of proteins simultaneously. Finally, a dual-channel processing module is implemented to facilitate depth fusion and extraction of both sequence and structural features. The model effectively captures the intricate alterations occurring pre- and post-protein mutation by integrating both sequence and 3D structural information. Results on the single-point mutation data set demonstrate a substantial improvement compared to state-of-the-art models. More significantly, 3D-ΔΔG exhibits superior performance when evaluated on the mixed mutation data sets, SKEMPIv1 and SKEMPIv2. The high level of agreement between the computationally predicted ΔΔG values and the experimentally determined values illustrates the potential of the 3D-ΔΔG model as an effective pre-screening tool in protein design and engineering.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.