Youxi Yang, Liying Shi, Xiaoting Xu, Bilan Luo, Xing Cui, Lei Tang, Jianta Wang
{"title":"Amorfrutin A ameliorates cerebral ischemia/reperfsion injury <i>in vivo</i> and <i>in vitro via</i> modulating Nrf2/HO-1 signaling pathway.","authors":"Youxi Yang, Liying Shi, Xiaoting Xu, Bilan Luo, Xing Cui, Lei Tang, Jianta Wang","doi":"10.4196/kjpp.24.304","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is a leading cause of death and disability worldwide. Amorfrutin A (AA), a small molecule compound found in <i>Amorpha fruticosa</i> L. (bastard indigo), possesses various activities, including blood glucose regulation, antiinflammatory, analgesic, and tumor suppression. In this study, we used the middle cerebral artery occlusion/reperfusion (MCAO/R) model and the oxygen glucose deprivation/ reoxygenation (OGD/R) model to mimic the ischemia/reperfusion process <i>in vivo</i> and <i>in vitro</i>, respectively. The role of AA in ischemic stroke was evaluated by CCK-8 assay, ELISA, TTC staining, hematoxylin-eosin staining and Western blot assay. AA increased the survival of BV2 or PC12 cells following OGD/R injury. Meanwhile, AA effectively suppressed the release of reactive oxygen species, nitric oxide, and tumor necrosis factor-α (TNF-α) in BV2 or PC12 cells subjected to OGD/R. After 24 h of MCAO/R surgery, AA significantly reduced the neurological deficit score, diminished the cerebral infarct volume, and attenuated brain pathological injury in rats. AA administration significantly increased superoxide dismutase and glutathione peroxidase levels, reduced malondialdehyde production, and inhibited the release of inflammatory cytokines interleukin-1β and TNF-α in the ischemic brain tissue of MCAO/R rats. In addition, AA suppressed Kelch-like ECH-associated protein 1 expression and promoted nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1, and heme oxygenase 1 (HO-1) expression in rat ischemic brain. AA may be a potential drug for the treatment of ischemic stroke. Its antioxidant and anti-inflammatory effects in cerebral ischemia-reperfusion injury may be related to Nrf2/HO-1 signaling pathway.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Amorfrutin A (AA), a small molecule compound found in Amorpha fruticosa L. (bastard indigo), possesses various activities, including blood glucose regulation, antiinflammatory, analgesic, and tumor suppression. In this study, we used the middle cerebral artery occlusion/reperfusion (MCAO/R) model and the oxygen glucose deprivation/ reoxygenation (OGD/R) model to mimic the ischemia/reperfusion process in vivo and in vitro, respectively. The role of AA in ischemic stroke was evaluated by CCK-8 assay, ELISA, TTC staining, hematoxylin-eosin staining and Western blot assay. AA increased the survival of BV2 or PC12 cells following OGD/R injury. Meanwhile, AA effectively suppressed the release of reactive oxygen species, nitric oxide, and tumor necrosis factor-α (TNF-α) in BV2 or PC12 cells subjected to OGD/R. After 24 h of MCAO/R surgery, AA significantly reduced the neurological deficit score, diminished the cerebral infarct volume, and attenuated brain pathological injury in rats. AA administration significantly increased superoxide dismutase and glutathione peroxidase levels, reduced malondialdehyde production, and inhibited the release of inflammatory cytokines interleukin-1β and TNF-α in the ischemic brain tissue of MCAO/R rats. In addition, AA suppressed Kelch-like ECH-associated protein 1 expression and promoted nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1, and heme oxygenase 1 (HO-1) expression in rat ischemic brain. AA may be a potential drug for the treatment of ischemic stroke. Its antioxidant and anti-inflammatory effects in cerebral ischemia-reperfusion injury may be related to Nrf2/HO-1 signaling pathway.
期刊介绍:
The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.