Preclinical pharmacokinetics, metabolism, and disposition of NXE0041178, a novel orally bioavailable agonist of the GPR52 receptor with potential for treatment of schizophrenia and related psychiatric disorders.
Simon Poulter, Nigel Austin, Stephen P Watson, Sarah J Bucknell, M Alistair O'Brien, Ari Tolonen, Toni Lassila, Lisa A Stott, Andy Mead, Cliona MacSweeney
{"title":"Preclinical pharmacokinetics, metabolism, and disposition of NXE0041178, a novel orally bioavailable agonist of the GPR52 receptor with potential for treatment of schizophrenia and related psychiatric disorders.","authors":"Simon Poulter, Nigel Austin, Stephen P Watson, Sarah J Bucknell, M Alistair O'Brien, Ari Tolonen, Toni Lassila, Lisa A Stott, Andy Mead, Cliona MacSweeney","doi":"10.1080/00498254.2025.2501593","DOIUrl":null,"url":null,"abstract":"<p><p>The physico-chemical properties, protein binding, metabolism, permeability, transporter interactions, chemical toxicity, and drug-drug interaction potential of the novel GPR52 agonist NXE0041178 were characterised.NXE0041178 demonstrated high cellular permeability, little interaction with efflux transporters P-gp and BCRP, and extensive brain exposure in rodent, consistent with its intended use in CNS disorders.<i>In vivo</i> pharmacokinetic profiling in mouse, rat and monkey demonstrated that NXE0041178 was well-absorbed, with low clearance, a moderate volume-of-distribution and moderate terminal half-life. Oxidative metabolism was the major elimination pathway, with negligible renal or biliary excretion.NXE0041178 displayed good <i>in vitro</i>-to-<i>in vivo</i> correlation in metabolic clearance in preclinical species and low turnover in human <i>in vitro</i> metabolic systems, suggestive of a human pharmacokinetic profile commensurate with once-daily dosing.Early <i>in vitro</i> metabolite identification studies suggested similar metabolic pathways in human and preclinical species, but a distinct metabolic profile in dog.NXE0041178 caused weak heterotropic catalytic activation of CYP3A4, and weak transcriptional induction of CYP3A4 and CYP2B6. No reactive metabolites of NXE0041178 were detected, and no genotoxicity or clinically relevant inhibition of P450 enzymes were observed.These findings extend our knowledge of the preclinical ADME profile of NXE0041178, supporting its continued development.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"1-16"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2025.2501593","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The physico-chemical properties, protein binding, metabolism, permeability, transporter interactions, chemical toxicity, and drug-drug interaction potential of the novel GPR52 agonist NXE0041178 were characterised.NXE0041178 demonstrated high cellular permeability, little interaction with efflux transporters P-gp and BCRP, and extensive brain exposure in rodent, consistent with its intended use in CNS disorders.In vivo pharmacokinetic profiling in mouse, rat and monkey demonstrated that NXE0041178 was well-absorbed, with low clearance, a moderate volume-of-distribution and moderate terminal half-life. Oxidative metabolism was the major elimination pathway, with negligible renal or biliary excretion.NXE0041178 displayed good in vitro-to-in vivo correlation in metabolic clearance in preclinical species and low turnover in human in vitro metabolic systems, suggestive of a human pharmacokinetic profile commensurate with once-daily dosing.Early in vitro metabolite identification studies suggested similar metabolic pathways in human and preclinical species, but a distinct metabolic profile in dog.NXE0041178 caused weak heterotropic catalytic activation of CYP3A4, and weak transcriptional induction of CYP3A4 and CYP2B6. No reactive metabolites of NXE0041178 were detected, and no genotoxicity or clinically relevant inhibition of P450 enzymes were observed.These findings extend our knowledge of the preclinical ADME profile of NXE0041178, supporting its continued development.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology