Bootstrap estimation of the proportion of outliers in robust regression.

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Statistics and Computing Pub Date : 2025-02-01 Epub Date: 2024-11-16 DOI:10.1007/s11222-024-10526-1
Qiang Heng, Kenneth Lange
{"title":"Bootstrap estimation of the proportion of outliers in robust regression.","authors":"Qiang Heng, Kenneth Lange","doi":"10.1007/s11222-024-10526-1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a nonparametric bootstrap method for estimating the proportions of inliers and outliers in robust regression models. Our approach is based on the concept of stability, providing robustness against distributional assumptions and eliminating the need for pre-specified confidence levels. Through numerical experiments, we demonstrate that this method yields more accurate and stable estimates than existing alternatives. Additionally, the generated instability paths offer a valuable graphical tool for understanding the inlier and outlier distributions within the data. The method naturally extends to generalized linear models, where we find that variance-stabilizing transformations produce residuals that are well-suited for outlier detection. Applications to two real-world datasets further illustrate the practical utility of our approach in identifying outliers.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10526-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a nonparametric bootstrap method for estimating the proportions of inliers and outliers in robust regression models. Our approach is based on the concept of stability, providing robustness against distributional assumptions and eliminating the need for pre-specified confidence levels. Through numerical experiments, we demonstrate that this method yields more accurate and stable estimates than existing alternatives. Additionally, the generated instability paths offer a valuable graphical tool for understanding the inlier and outlier distributions within the data. The method naturally extends to generalized linear models, where we find that variance-stabilizing transformations produce residuals that are well-suited for outlier detection. Applications to two real-world datasets further illustrate the practical utility of our approach in identifying outliers.

稳健回归中异常值比例的自举估计。
本文提出了一种估计鲁棒回归模型中离群值和内群值比例的非参数自举方法。我们的方法基于稳定性的概念,提供了对分布假设的鲁棒性,并且消除了预先指定置信水平的需要。通过数值实验,我们证明了该方法比现有的替代方法产生更准确和稳定的估计。此外,生成的不稳定性路径提供了一个有价值的图形工具,用于理解数据中的内线和离群分布。该方法自然地扩展到广义线性模型,我们发现方差稳定变换产生的残差非常适合于离群值检测。对两个真实世界数据集的应用进一步说明了我们的方法在识别异常值方面的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信