Lays Martin Sobral, Faye M Walker, Krishna Madhavan, Elizabeth Janko, Sahiti Donthula, Etienne Danis, Pradeep Bompada, Ilango Balakrishnan, Dong Wang, Angela Pierce, Mary M Haag, Billie J Carstens, Natalie J Serkova, Nicholas K Foreman, Sujatha Venkataraman, Bethany Veo, Rajeev Vibhakar, Nathan A Dahl
{"title":"Targeting processive transcription for Myc-driven circuitry in medulloblastoma.","authors":"Lays Martin Sobral, Faye M Walker, Krishna Madhavan, Elizabeth Janko, Sahiti Donthula, Etienne Danis, Pradeep Bompada, Ilango Balakrishnan, Dong Wang, Angela Pierce, Mary M Haag, Billie J Carstens, Natalie J Serkova, Nicholas K Foreman, Sujatha Venkataraman, Bethany Veo, Rajeev Vibhakar, Nathan A Dahl","doi":"10.1093/neuonc/noaf121","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medulloblastoma is the most common malignant brain tumor of childhood. The highest-risk tumors are driven by recurrent Myc amplifications (Myc-MB) and experience poorer outcomes despite intensive multimodal therapy. The Myc transcription factor defines core regulatory circuitry for these tumors and acts to broadly amplify downstream pro-survival transcriptional programs. Therapeutic targeting of Myc directly has proven elusive, but inhibiting transcriptional cofactors may present an indirect means of drugging the oncogenic transcriptional circuitry sustaining Myc-MB.</p><p><strong>Methods: </strong>Independent CRISPR-Cas9 screens were pooled to identify conserved dependencies in Myc-MB. We performed chromatin conformation capture (Hi-C) from primary patient Myc-MB samples to map enhancer-promoter interactions. We then treated in vitro and xenograft models with CDK9/7 inhibitors to evaluate effect on Myc-driven programs and tumor growth.</p><p><strong>Results: </strong>Eight CRISPR-Cas9 screens performed across three independent labs identify CDK9 as a conserved dependency in Myc-MB. Myc-MB cells are susceptible to CDK9 inhibition, which is synergistic with concurrent inhibition of CDK7. Inhibition of transcriptional CDKs disrupts enhancer-promoter activity in Myc-MB and downregulates Myc-driven transcriptional programs, exerting potent anti-tumor effect.</p><p><strong>Conclusions: </strong>Our findings identify CDK9 inhibition as a translationally promising strategy for the treatment of Myc-MB.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf121","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Medulloblastoma is the most common malignant brain tumor of childhood. The highest-risk tumors are driven by recurrent Myc amplifications (Myc-MB) and experience poorer outcomes despite intensive multimodal therapy. The Myc transcription factor defines core regulatory circuitry for these tumors and acts to broadly amplify downstream pro-survival transcriptional programs. Therapeutic targeting of Myc directly has proven elusive, but inhibiting transcriptional cofactors may present an indirect means of drugging the oncogenic transcriptional circuitry sustaining Myc-MB.
Methods: Independent CRISPR-Cas9 screens were pooled to identify conserved dependencies in Myc-MB. We performed chromatin conformation capture (Hi-C) from primary patient Myc-MB samples to map enhancer-promoter interactions. We then treated in vitro and xenograft models with CDK9/7 inhibitors to evaluate effect on Myc-driven programs and tumor growth.
Results: Eight CRISPR-Cas9 screens performed across three independent labs identify CDK9 as a conserved dependency in Myc-MB. Myc-MB cells are susceptible to CDK9 inhibition, which is synergistic with concurrent inhibition of CDK7. Inhibition of transcriptional CDKs disrupts enhancer-promoter activity in Myc-MB and downregulates Myc-driven transcriptional programs, exerting potent anti-tumor effect.
Conclusions: Our findings identify CDK9 inhibition as a translationally promising strategy for the treatment of Myc-MB.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.