{"title":"Assessing the impact of sampling bias on node centralities in synthetic and biological networks.","authors":"Ali Salehzadeh-Yazdi, Marc-Thorsten Hütt","doi":"10.1038/s41540-025-00526-w","DOIUrl":null,"url":null,"abstract":"<p><p>Centrality measures are crucial for network analysis, offering insights into node importance within complex networks. However, their accuracy is often affected by observational errors and incomplete data. This study investigates how sampling biases systematically impact centrality measures. We simulate six types of biased down-sampling, transitioning networks from dense to sparse states, using the initial network as the 'ground truth.' Changes in centrality values reveal the robustness of these measures under various sampling scenarios across synthetic and biological networks. Our results show that in synthetic networks, some sampling methods consistently exhibit higher robustness, particularly in scale-free networks. For biological networks, protein interaction networks are the most robust, followed by metabolite, gene regulatory, and reaction networks. Local centrality measures generally show greater robustness, while global measures are more heterogeneous and less reliable. This study highlights the limitations of centrality measures under sampling biases and informs the development of more robust methodologies.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"47"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00526-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Centrality measures are crucial for network analysis, offering insights into node importance within complex networks. However, their accuracy is often affected by observational errors and incomplete data. This study investigates how sampling biases systematically impact centrality measures. We simulate six types of biased down-sampling, transitioning networks from dense to sparse states, using the initial network as the 'ground truth.' Changes in centrality values reveal the robustness of these measures under various sampling scenarios across synthetic and biological networks. Our results show that in synthetic networks, some sampling methods consistently exhibit higher robustness, particularly in scale-free networks. For biological networks, protein interaction networks are the most robust, followed by metabolite, gene regulatory, and reaction networks. Local centrality measures generally show greater robustness, while global measures are more heterogeneous and less reliable. This study highlights the limitations of centrality measures under sampling biases and informs the development of more robust methodologies.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.