{"title":"Disulfide bonds enhance thermal stability and thumb region drives activity of the glycoside hydrolase 11 xylanase rMxylcd","authors":"Songna Wu , Nianying Zhang , Qun Wan","doi":"10.1016/j.jsb.2025.108209","DOIUrl":null,"url":null,"abstract":"<div><div>Thermostable enzymes have significant advantages in industries, yet uncovering novel candidates with superior properties remains a scientific pursuit. This study identified rMxyl<sup>cd</sup>, a glycoside hydrolase 11 family thermophilic xylanase from compost-soil metagenome, which exhibited a high specific activity of 5954 U·mg<sup>−1</sup> at pH 5.5 and 80°C. rMxyl<sup>cd</sup> was crystallized and diffracted to 1.5 Å resolution. Compared to the mesophilic xylanase Xyn II, rMxyl<sup>cd</sup> exhibits a more compact architecture. Notably, B-factor analysis reveals a uniquely flexible thumb region, hinting at its critical role in the enzyme’s catalytic mechanism. rMxyl<sup>cd</sup> contains two disulfide bonds in the thumb and the <em>N</em>-terminal regions. Breaking these disulfide bonds by mutagenesis has dramatically decreased activities and thermostability. Conversely, introducing an extra disulfide bond at the <em>N</em>-terminal region of its α-helix extended its half-life for more than five folds at 80°C. Our studies firmly establish that the disulfide bonds are essential for its high thermal stability and the flexibility of the thumb region is crucial for its activity. Comparing the rMxyl<sup>cd</sup> crystal structure with the AlphaFold2-predicted model shows overall similarity, but the crystal structure offers higher local accuracy, especially in key functional regions. These findings not only deepen our understanding of the structure-function relationship of thermophilic xylanases but also inform a rational design of industrial enzymes.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108209"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermostable enzymes have significant advantages in industries, yet uncovering novel candidates with superior properties remains a scientific pursuit. This study identified rMxylcd, a glycoside hydrolase 11 family thermophilic xylanase from compost-soil metagenome, which exhibited a high specific activity of 5954 U·mg−1 at pH 5.5 and 80°C. rMxylcd was crystallized and diffracted to 1.5 Å resolution. Compared to the mesophilic xylanase Xyn II, rMxylcd exhibits a more compact architecture. Notably, B-factor analysis reveals a uniquely flexible thumb region, hinting at its critical role in the enzyme’s catalytic mechanism. rMxylcd contains two disulfide bonds in the thumb and the N-terminal regions. Breaking these disulfide bonds by mutagenesis has dramatically decreased activities and thermostability. Conversely, introducing an extra disulfide bond at the N-terminal region of its α-helix extended its half-life for more than five folds at 80°C. Our studies firmly establish that the disulfide bonds are essential for its high thermal stability and the flexibility of the thumb region is crucial for its activity. Comparing the rMxylcd crystal structure with the AlphaFold2-predicted model shows overall similarity, but the crystal structure offers higher local accuracy, especially in key functional regions. These findings not only deepen our understanding of the structure-function relationship of thermophilic xylanases but also inform a rational design of industrial enzymes.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure