Qifa Li , Ruipeng Li , Biying Ge , Xiaoqin Luo , Jing Xu , Lei Fu , Yue Kong , Jin-Yi Yang , Shao Li
{"title":"Anticonvulsant effect of Stachydrine on pentylenetetrazole-induced kindling seizure mouse model via Notch and NMDAR signaling pathways","authors":"Qifa Li , Ruipeng Li , Biying Ge , Xiaoqin Luo , Jing Xu , Lei Fu , Yue Kong , Jin-Yi Yang , Shao Li","doi":"10.1016/j.jep.2025.119975","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><div>Stachydrine (STA), the principal bioactive alkaloid of <em>Leonurus japonicus</em> (<em>Motherwort/\"Yi Mu Cao\"</em>), may derive its ethnopharmacological relevance for epilepsy management from the botanical origin-<em>Motherwort's</em> documented traditional use in treating seizures and other neurological cardiovascular diseases.</div></div><div><h3>Aim of the study</h3><div>To validate STA's ethnomedicinal claim an anticonvulsant by mechanistically interrogating its dual modulation of Notch1-driven neuroinflammation and NMDA receptor-mediated excitotoxicity, which are two key hallmarks of chronic epileptogenesis.</div></div><div><h3>Materials and methods</h3><div>Male C57BL/6 mice were divided into three groups to evaluate the neuroprotective and an anticonvulsant effects of STA in the PTZ-induced seizure model: Control group, PTZ group, and PTZ + STA group. Behavioral seizure scoring and cognitive tests were integrated with EEG recordings to assess neuronal synchronization. Molecular mechanisms were dissected via hippocampal immunohistochemistry and Western blotting.</div></div><div><h3>Results</h3><div>Our results showed that daily oral administration of STA for a duration of 25 days significantly reduced seizure scores. EEG recordings indicated that STA treatment resulted in a notable reduction in both total brainwave power and firing amplitude within the groups receiving STA. Furthermore, STA administration provided cognitive protection against kindling-associated deficits, as demonstrated by improved alteration behavior and recognition index in Y-maze and object recognition tests. STA administration reduced neuronal loss and glial cell activation. Additionally, significant downregulation of NMDA receptor subunits, CAMK2, caspase-3, Notch1, and Hes1 expression levels was observed following STA administration.</div></div><div><h3>Conclusion</h3><div>These findings suggest that STA provides neuroprotection against PTZ-induced epilepsy by modulating the Notch and NMDA receptor pathways, thus addressing neuroinflammation and apoptosis resulting from excitotoxicity.</div></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":"349 ","pages":"Article 119975"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874125006609","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance
Stachydrine (STA), the principal bioactive alkaloid of Leonurus japonicus (Motherwort/"Yi Mu Cao"), may derive its ethnopharmacological relevance for epilepsy management from the botanical origin-Motherwort's documented traditional use in treating seizures and other neurological cardiovascular diseases.
Aim of the study
To validate STA's ethnomedicinal claim an anticonvulsant by mechanistically interrogating its dual modulation of Notch1-driven neuroinflammation and NMDA receptor-mediated excitotoxicity, which are two key hallmarks of chronic epileptogenesis.
Materials and methods
Male C57BL/6 mice were divided into three groups to evaluate the neuroprotective and an anticonvulsant effects of STA in the PTZ-induced seizure model: Control group, PTZ group, and PTZ + STA group. Behavioral seizure scoring and cognitive tests were integrated with EEG recordings to assess neuronal synchronization. Molecular mechanisms were dissected via hippocampal immunohistochemistry and Western blotting.
Results
Our results showed that daily oral administration of STA for a duration of 25 days significantly reduced seizure scores. EEG recordings indicated that STA treatment resulted in a notable reduction in both total brainwave power and firing amplitude within the groups receiving STA. Furthermore, STA administration provided cognitive protection against kindling-associated deficits, as demonstrated by improved alteration behavior and recognition index in Y-maze and object recognition tests. STA administration reduced neuronal loss and glial cell activation. Additionally, significant downregulation of NMDA receptor subunits, CAMK2, caspase-3, Notch1, and Hes1 expression levels was observed following STA administration.
Conclusion
These findings suggest that STA provides neuroprotection against PTZ-induced epilepsy by modulating the Notch and NMDA receptor pathways, thus addressing neuroinflammation and apoptosis resulting from excitotoxicity.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.