CT-based AI framework leveraging multi-scale features for predicting pathological grade and Ki67 index in clear cell renal cell carcinoma: a multicenter study.
IF 4.1 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Huancheng Yang, Yueyue Zhang, Fan Li, Weihao Liu, Haoyang Zeng, Haoyuan Yuan, Zixi Ye, Zexin Huang, Yangguang Yuan, Ye Xiang, Kai Wu, Hanlin Liu
{"title":"CT-based AI framework leveraging multi-scale features for predicting pathological grade and Ki67 index in clear cell renal cell carcinoma: a multicenter study.","authors":"Huancheng Yang, Yueyue Zhang, Fan Li, Weihao Liu, Haoyang Zeng, Haoyuan Yuan, Zixi Ye, Zexin Huang, Yangguang Yuan, Ye Xiang, Kai Wu, Hanlin Liu","doi":"10.1186/s13244-025-01980-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To explore whether a CT-based AI framework, leveraging multi-scale features, can offer a non-invasive approach to accurately predict pathological grade and Ki67 index in clear cell renal cell carcinoma (ccRCC).</p><p><strong>Methods: </strong>In this multicenter retrospective study, a total of 1073 pathologically confirmed ccRCC patients from seven cohorts were split into internal cohorts (training and validation sets) and an external test set. The AI framework comprised an image processor, a 3D-kidney and tumor segmentation model by 3D-UNet, a multi-scale features extractor built upon unsupervised learning, and a multi-task classifier utilizing XGBoost. A quantitative model interpretation technique, known as SHapley Additive exPlanations (SHAP), was employed to explore the contribution of multi-scale features.</p><p><strong>Results: </strong>The 3D-UNet model showed excellent performance in segmenting both the kidney and tumor regions, with Dice coefficients exceeding 0.92. The proposed multi-scale features model exhibited strong predictive capability for pathological grading and Ki67 index, with AUROC values of 0.84 and 0.87, respectively, in the internal validation set, and 0.82 and 0.82, respectively, in the external test set. The SHAP results demonstrated that features from radiomics, the 3D Auto-Encoder, and dimensionality reduction all made significant contributions to both prediction tasks.</p><p><strong>Conclusions: </strong>The proposed AI framework, leveraging multi-scale features, accurately predicts the pathological grade and Ki67 index of ccRCC.</p><p><strong>Critical relevance statement: </strong>The CT-based AI framework leveraging multi-scale features offers a promising avenue for accurately predicting the pathological grade and Ki67 index of ccRCC preoperatively, indicating a direction for non-invasive assessment.</p><p><strong>Key points: </strong>Non-invasively determining pathological grade and Ki67 index in ccRCC could guide treatment decisions. The AI framework integrates segmentation, classification, and model interpretation, enabling fully automated analysis. The AI framework enables non-invasive preoperative detection of high-risk tumors, assisting clinical decision-making.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"102"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01980-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To explore whether a CT-based AI framework, leveraging multi-scale features, can offer a non-invasive approach to accurately predict pathological grade and Ki67 index in clear cell renal cell carcinoma (ccRCC).
Methods: In this multicenter retrospective study, a total of 1073 pathologically confirmed ccRCC patients from seven cohorts were split into internal cohorts (training and validation sets) and an external test set. The AI framework comprised an image processor, a 3D-kidney and tumor segmentation model by 3D-UNet, a multi-scale features extractor built upon unsupervised learning, and a multi-task classifier utilizing XGBoost. A quantitative model interpretation technique, known as SHapley Additive exPlanations (SHAP), was employed to explore the contribution of multi-scale features.
Results: The 3D-UNet model showed excellent performance in segmenting both the kidney and tumor regions, with Dice coefficients exceeding 0.92. The proposed multi-scale features model exhibited strong predictive capability for pathological grading and Ki67 index, with AUROC values of 0.84 and 0.87, respectively, in the internal validation set, and 0.82 and 0.82, respectively, in the external test set. The SHAP results demonstrated that features from radiomics, the 3D Auto-Encoder, and dimensionality reduction all made significant contributions to both prediction tasks.
Conclusions: The proposed AI framework, leveraging multi-scale features, accurately predicts the pathological grade and Ki67 index of ccRCC.
Critical relevance statement: The CT-based AI framework leveraging multi-scale features offers a promising avenue for accurately predicting the pathological grade and Ki67 index of ccRCC preoperatively, indicating a direction for non-invasive assessment.
Key points: Non-invasively determining pathological grade and Ki67 index in ccRCC could guide treatment decisions. The AI framework integrates segmentation, classification, and model interpretation, enabling fully automated analysis. The AI framework enables non-invasive preoperative detection of high-risk tumors, assisting clinical decision-making.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.