Xinhai Gao, Tianhua Wang, Cun Liu, Ye Li, Wenfeng Zhang, Minpu Zhang, Yan Yao, Chundi Gao, Ruijuan Liu, Changgang Sun
{"title":"The integrated single-cell analysis interpret the lactate metabolism-driven immune suppression in triple-negative breast cancer.","authors":"Xinhai Gao, Tianhua Wang, Cun Liu, Ye Li, Wenfeng Zhang, Minpu Zhang, Yan Yao, Chundi Gao, Ruijuan Liu, Changgang Sun","doi":"10.1007/s12672-025-02605-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Individuals with triple-negative breast cancer (TNBC) exhibit elevated lactate levels, which offers a valuable lead for investigating the molecular mechanisms underlying the tumor microenvironment (TME) and identifying more efficacious treatments.</p><p><strong>Methods: </strong>TNBC samples were classified based on lactate-associated genes. A single-cell transcriptomic approach was employed to examine functional differences across cells with varying lactate metabolism. Immunohistochemistry was used to explore the relationship between lactate metabolism and the CXCL12/CXCR4 signaling axis. In addition, utilizing machine learning techniques, we constructed a prognostic model based on lactic acid phenotype genes.</p><p><strong>Results: </strong>Lactate-associated gene-based stratification revealed increased immune cell infiltration and immune checkpoint expression in Lactate Cluster 1. Elevated lactate metabolism scores were observed in both cancer-associated fibroblasts (CAFs) and malignant cells. CAFs with high lactate metabolism exhibited immune suppression through the CXCL12/CXCR4 axis. Immunohistochemistry confirmed elevated LDHA, LDHB, CXCL12, and CXCR4 levels in the high lactate group.</p><p><strong>Conclusion: </strong>This study elucidates the complex interplay between lactate and immune cells in TNBC and highlights the CXCL12/CXCR4 axis as a key pathway through which lactate mediates immune suppression, offering new insights into metabolic regulation within the TME. Furthermore, we developed a prognostic model based on lactate metabolism phenotype genes to predict the prognosis of TNBC patients and guide immunotherapy.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"784"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02605-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Individuals with triple-negative breast cancer (TNBC) exhibit elevated lactate levels, which offers a valuable lead for investigating the molecular mechanisms underlying the tumor microenvironment (TME) and identifying more efficacious treatments.
Methods: TNBC samples were classified based on lactate-associated genes. A single-cell transcriptomic approach was employed to examine functional differences across cells with varying lactate metabolism. Immunohistochemistry was used to explore the relationship between lactate metabolism and the CXCL12/CXCR4 signaling axis. In addition, utilizing machine learning techniques, we constructed a prognostic model based on lactic acid phenotype genes.
Results: Lactate-associated gene-based stratification revealed increased immune cell infiltration and immune checkpoint expression in Lactate Cluster 1. Elevated lactate metabolism scores were observed in both cancer-associated fibroblasts (CAFs) and malignant cells. CAFs with high lactate metabolism exhibited immune suppression through the CXCL12/CXCR4 axis. Immunohistochemistry confirmed elevated LDHA, LDHB, CXCL12, and CXCR4 levels in the high lactate group.
Conclusion: This study elucidates the complex interplay between lactate and immune cells in TNBC and highlights the CXCL12/CXCR4 axis as a key pathway through which lactate mediates immune suppression, offering new insights into metabolic regulation within the TME. Furthermore, we developed a prognostic model based on lactate metabolism phenotype genes to predict the prognosis of TNBC patients and guide immunotherapy.