Machine learning prediction of pathological complete response to neoadjuvant chemotherapy with peritumoral breast tumor ultrasound radiomics: compare with intratumoral radiomics and clinicopathologic predictors.
{"title":"Machine learning prediction of pathological complete response to neoadjuvant chemotherapy with peritumoral breast tumor ultrasound radiomics: compare with intratumoral radiomics and clinicopathologic predictors.","authors":"Jiejie Yao, Wei Zhou, Xiaohong Jia, Ying Zhu, Xiaosong Chen, Weiwei Zhan, Jianqiao Zhou","doi":"10.1007/s10549-025-07727-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Noninvasive, accurate and novel approaches to predict patients who will achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) could assist treatment strategies. The aim of this study was to explore the application of machine learning (ML) based peritumoral ultrasound radiomics signature (PURS), compared with intratumoral radiomics (IURS) and clinicopathologic factors, for early prediction of pCR.</p><p><strong>Methods: </strong>We analyzed 358 locally advanced breast cancer patients (250 in the training set and 108 in the test set), who accepted NAC and post NAC surgery at our institution. The clinical and pathological data were analyzed using the independent t test and the Chi-square test to determine the factors associated with pCR. The PURS and IURS of baseline breast tumors were extracted by using 3D-slicer and PyRadiomics software. Five ML classifiers including linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), logistic regression (LR), and adaptive boosting (AdaBoost) were applied to construct radiomics predictive models. The performance of PURS, IURS models and clinicopathologic predictors were assessed with respect to sensitivity, specificity, accuracy and the areas under the curve (AUCs).</p><p><strong>Results: </strong>Ninety-seven patients achieved pCR. The clinicopathologic predictors obtained an AUC of 0.759. Among PURS models, the RF classifier achieved better efficacy (AUC of 0.889) than LR (0.849), AdaBoost (0.823), SVM (0.746) and LDA (0.732). The RF classifier also obtained a maximum AUC of 0.931 than 0.920 (AdaBoost), 0.875 (LR), 0.825 (SVM), and 0.798 (LDA) in IURS models in the test set. The RF based PURS yielded higher predictive ability (AUC 0.889; 95% CI 0.814, 0.947) than clinicopathologic factors (AUC 0.759; 95% CI 0.657, 0.861; p < 0.05), but lower efficacy compared with IURS (AUC 0.931; 95% CI 0.865, 0.980; p < 0.05).</p><p><strong>Conclusion: </strong>The peritumoral US radiomics, as a novel potential biomarker, can assist clinical therapy decisions.</p>","PeriodicalId":9133,"journal":{"name":"Breast Cancer Research and Treatment","volume":" ","pages":"325-336"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-025-07727-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Noninvasive, accurate and novel approaches to predict patients who will achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) could assist treatment strategies. The aim of this study was to explore the application of machine learning (ML) based peritumoral ultrasound radiomics signature (PURS), compared with intratumoral radiomics (IURS) and clinicopathologic factors, for early prediction of pCR.
Methods: We analyzed 358 locally advanced breast cancer patients (250 in the training set and 108 in the test set), who accepted NAC and post NAC surgery at our institution. The clinical and pathological data were analyzed using the independent t test and the Chi-square test to determine the factors associated with pCR. The PURS and IURS of baseline breast tumors were extracted by using 3D-slicer and PyRadiomics software. Five ML classifiers including linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), logistic regression (LR), and adaptive boosting (AdaBoost) were applied to construct radiomics predictive models. The performance of PURS, IURS models and clinicopathologic predictors were assessed with respect to sensitivity, specificity, accuracy and the areas under the curve (AUCs).
Results: Ninety-seven patients achieved pCR. The clinicopathologic predictors obtained an AUC of 0.759. Among PURS models, the RF classifier achieved better efficacy (AUC of 0.889) than LR (0.849), AdaBoost (0.823), SVM (0.746) and LDA (0.732). The RF classifier also obtained a maximum AUC of 0.931 than 0.920 (AdaBoost), 0.875 (LR), 0.825 (SVM), and 0.798 (LDA) in IURS models in the test set. The RF based PURS yielded higher predictive ability (AUC 0.889; 95% CI 0.814, 0.947) than clinicopathologic factors (AUC 0.759; 95% CI 0.657, 0.861; p < 0.05), but lower efficacy compared with IURS (AUC 0.931; 95% CI 0.865, 0.980; p < 0.05).
Conclusion: The peritumoral US radiomics, as a novel potential biomarker, can assist clinical therapy decisions.
期刊介绍:
Breast Cancer Research and Treatment provides the surgeon, radiotherapist, medical oncologist, endocrinologist, epidemiologist, immunologist or cell biologist investigating problems in breast cancer a single forum for communication. The journal creates a "market place" for breast cancer topics which cuts across all the usual lines of disciplines, providing a site for presenting pertinent investigations, and for discussing critical questions relevant to the entire field. It seeks to develop a new focus and new perspectives for all those concerned with breast cancer.