{"title":"Impact of Bridged Nucleic Acid Positions within Blocking Oligonucleotides on DNA Amplification Inhibition in Wild-Type Blocking PCR.","authors":"Takuma Yamashita, Yoshinori Tsukumo, Takenori Yamamoto, Eriko Uchida, Tokuyuki Yoshida, Yasunori Uchida, Takao Inoue","doi":"10.1248/bpb.b25-00113","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting low-frequency genetic mutations is crucial for genetic testing, especially in cancer diagnostics. Wild-type blocking PCR identifies these genetic mutations using a blocking oligonucleotide that is fully complementary to wild-type DNA. The blocking oligonucleotide selectively binds to wild-type DNA, inhibiting its amplification by DNA polymerase and allowing preferential amplification of mutant DNA. Bridged nucleic acids (BNAs), with high binding affinities for cDNA, are often incorporated into the blocking oligonucleotide to enhance inhibition. However, the effects of BNA positioning within the blocking oligonucleotide on wild-type DNA amplification inhibition are poorly understood. To address this issue, we evaluated the effects of different BNA positions on amplification inhibition efficacy by comparing blocking oligonucleotides with varying numbers of BNAs at the 5' end, 3' end, and central region. Results indicated that BNAs at the 5' end enhanced the inhibition efficacy, whereas BNAs at the 3' end notably diminished the inhibition efficacy. Likewise, increasing the number of BNAs in the central region generally decreased the inhibition efficacy. This is one of the first studies to report the importance of BNA positioning in the amplification inhibition efficacy of blocking oligonucleotides.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 5","pages":"606-612"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b25-00113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting low-frequency genetic mutations is crucial for genetic testing, especially in cancer diagnostics. Wild-type blocking PCR identifies these genetic mutations using a blocking oligonucleotide that is fully complementary to wild-type DNA. The blocking oligonucleotide selectively binds to wild-type DNA, inhibiting its amplification by DNA polymerase and allowing preferential amplification of mutant DNA. Bridged nucleic acids (BNAs), with high binding affinities for cDNA, are often incorporated into the blocking oligonucleotide to enhance inhibition. However, the effects of BNA positioning within the blocking oligonucleotide on wild-type DNA amplification inhibition are poorly understood. To address this issue, we evaluated the effects of different BNA positions on amplification inhibition efficacy by comparing blocking oligonucleotides with varying numbers of BNAs at the 5' end, 3' end, and central region. Results indicated that BNAs at the 5' end enhanced the inhibition efficacy, whereas BNAs at the 3' end notably diminished the inhibition efficacy. Likewise, increasing the number of BNAs in the central region generally decreased the inhibition efficacy. This is one of the first studies to report the importance of BNA positioning in the amplification inhibition efficacy of blocking oligonucleotides.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.