Distribution of runs of homozygosity in Lactuca species and its implications for plant breeding and evolutionary conservation.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qianqian Zhang, Wenjun Lv, Defu Liu, Xueying Xie, Ke Yang, You Tang, Johann Solkner
{"title":"Distribution of runs of homozygosity in Lactuca species and its implications for plant breeding and evolutionary conservation.","authors":"Qianqian Zhang, Wenjun Lv, Defu Liu, Xueying Xie, Ke Yang, You Tang, Johann Solkner","doi":"10.1186/s12864-025-11674-y","DOIUrl":null,"url":null,"abstract":"<p><p>Runs of homozygosity (ROH) have been extensively investigated to uncover the genomic inbred regions that reflect past population and breeding histories. In this study, we have explored the distribution and number of ROH in different Lactuca species including the cultivated lettuce varieties and their wild relatives. Next generation sequencing (NGS) technology provides the unique opportunity to study the genomes with resolution up to per-base-pair and we could compute ROH in the highest accuracy using NGS data. Our study reveals that Lactuca sativa has the longest average ROH length and fewest number of ROHs, while wild species show shorter, more numerous ROHs as expected. We found that these cultivated varieties exhibit relatively stable number of ROH and ROH lengths, with the largest median ROH count observed in Oilseed and the largest average ROH length in Crisphead. There is a significant proportion of medium-length ROHs (100 kb-1 Mb) enriched in L. sativa and L. serriola, with the highest number observed in L. serriola, while L. saligna has more short ROHs (< 10 KB), and the highest number of ROHs in the 10 KB-100 KB range were observed in Butterhead, with Stalk and Oilseed showing fewer and shorter ROHs overall. It suggests that Stalk and Oilseed were still in a process of breeding. The comparison between PLINK computation and our developed in-house algorithm shows that PLINK tends to detect longer ROH, whereas our algorithm adopts a more conservative approach, resulting in fewer and shorter ROH segments detected with higher precision more suitable for NGS data. We further analyze the distribution of ROH hotspots with a higher frequency occurred across cultivated species genomes, which has identified key genes such as DREB2B, NHL12, RPV1, and EIX2, which play crucial roles in plant stress tolerance and immune responses, enhancing adaptability to extreme environments and providing resistance to various diseases. These findings provide fresh scientific insights into lettuce breeding, germplasm conservation, and sustainable production, highlighting the importance of understanding and managing genetic diversity in global agricultural practices.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"481"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11674-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Runs of homozygosity (ROH) have been extensively investigated to uncover the genomic inbred regions that reflect past population and breeding histories. In this study, we have explored the distribution and number of ROH in different Lactuca species including the cultivated lettuce varieties and their wild relatives. Next generation sequencing (NGS) technology provides the unique opportunity to study the genomes with resolution up to per-base-pair and we could compute ROH in the highest accuracy using NGS data. Our study reveals that Lactuca sativa has the longest average ROH length and fewest number of ROHs, while wild species show shorter, more numerous ROHs as expected. We found that these cultivated varieties exhibit relatively stable number of ROH and ROH lengths, with the largest median ROH count observed in Oilseed and the largest average ROH length in Crisphead. There is a significant proportion of medium-length ROHs (100 kb-1 Mb) enriched in L. sativa and L. serriola, with the highest number observed in L. serriola, while L. saligna has more short ROHs (< 10 KB), and the highest number of ROHs in the 10 KB-100 KB range were observed in Butterhead, with Stalk and Oilseed showing fewer and shorter ROHs overall. It suggests that Stalk and Oilseed were still in a process of breeding. The comparison between PLINK computation and our developed in-house algorithm shows that PLINK tends to detect longer ROH, whereas our algorithm adopts a more conservative approach, resulting in fewer and shorter ROH segments detected with higher precision more suitable for NGS data. We further analyze the distribution of ROH hotspots with a higher frequency occurred across cultivated species genomes, which has identified key genes such as DREB2B, NHL12, RPV1, and EIX2, which play crucial roles in plant stress tolerance and immune responses, enhancing adaptability to extreme environments and providing resistance to various diseases. These findings provide fresh scientific insights into lettuce breeding, germplasm conservation, and sustainable production, highlighting the importance of understanding and managing genetic diversity in global agricultural practices.

乳藓属植物纯合子的分布及其对植物育种和进化保护的意义。
为了揭示反映过去种群和育种历史的基因组近交区域,对纯合子序列(ROH)进行了广泛的研究。在本研究中,我们探讨了ROH在不同莴苣科植物(包括栽培莴苣品种及其野生近缘种)中的分布和数量。下一代测序(NGS)技术为研究基因组提供了独特的机会,分辨率高达每个碱基对,我们可以使用NGS数据以最高的精度计算ROH。研究表明,油菜的平均ROH长度最长,ROHs数量最少,而野生种的平均ROH长度较短,ROHs数量较多。结果表明,这些栽培品种的ROH数量和长度相对稳定,其中油籽的ROH数量中位数最大,脆皮的ROH平均长度最大。中长度ROHs (100 kb-1 Mb)在油菜和油菜中富集的比例显著,其中以油菜最多,而盐碱油菜的短长度ROHs (100 kb-1 Mb)较多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信