{"title":"Elucidation of roles of serine/threonine phosphatases PP1 and PP2A in mediating CCK-stimulated growth and enzyme secretion in pancreatic acinar cells.","authors":"Irene Ramos-Alvarez, Robert T Jensen","doi":"10.1152/ajpgi.00308.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Serine/threonine phosphatases, protein phosphatases 1 and 2A (PP1 and PP2A), play important roles in mediating cellular signaling in different tissues to different stimuli, including glycogen metabolism, protein synthesis/growth, and secretion. However, the roles of PP1/PP2A in pancreatic acinar cell secretion/growth are both unclear and controversial. To address this issue, in the present study, we examined the ability of gastrointestinal hormones/growth factors (GFs) to activate PP1 and PP2A and the signaling cascades involved in rat pancreatic acini and the pancreatic acinar tumor cell line, AR42J cells. PP1 and PP2A were both detected in pancreatic acini and AR42J cells. In acini, PP1 and PP2A were activated by pancreatic secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol) and endothelin and by pancreatic GFs (insulin, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, platelet-derived growth factor, and insulin-like growth factor 1). Full CCK-8 activation of PP1/PP2A required activation of both high- and low-affinity CCK1-receptor states. Using specific PP1 and PP2 assays, in both acini and AR42J cells, experimental conditions were established, where calyculin A, a known nonselective PP1/PP2A inhibitor, inhibited activation of both, whereas okadaic acid and fostriecin inhibited only PP2A activation and tautomycetin inhibited only PP1 activation. Under these conditions, CCK-stimulated enzyme secretion and stimulation of p44/42, a key mediator of growth, required PP2A activation, without activation of PP1. Using specific siRNA for PP1/PP2A in AR42J cells, similar results were found. These results establish that only PP2A activation is essential for CCK-mediated stimulation of growth and enzyme secretion in pancreatic acinar cells and pancreatic acinar AR42J tumor cells.<b>NEW & NOTEWORTHY</b> Despite more than 10 studies, the roles of the serine/threonine phosphatases, PP1/PP2A, in pancreatic acinar cell-secretion/growth remain controversial. This study demonstrates that both PP1/PP2A are present in rat pancreatic acini and in pancreatic acinar tumor-AR42J cells. Both phosphatases are activated by pancreatic secretagogues, stimulating PLC, and by pancreatic growth factors. Using specific inhibitory conditions for PP1/PP2A (inhibitors, siRNA studies), only PP2A activation is needed for CCK-8-stimulated enzyme secretion and growth signaling cascades in pancreatic acinar cells.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G102-G121"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00308.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Serine/threonine phosphatases, protein phosphatases 1 and 2A (PP1 and PP2A), play important roles in mediating cellular signaling in different tissues to different stimuli, including glycogen metabolism, protein synthesis/growth, and secretion. However, the roles of PP1/PP2A in pancreatic acinar cell secretion/growth are both unclear and controversial. To address this issue, in the present study, we examined the ability of gastrointestinal hormones/growth factors (GFs) to activate PP1 and PP2A and the signaling cascades involved in rat pancreatic acini and the pancreatic acinar tumor cell line, AR42J cells. PP1 and PP2A were both detected in pancreatic acini and AR42J cells. In acini, PP1 and PP2A were activated by pancreatic secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol) and endothelin and by pancreatic GFs (insulin, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, platelet-derived growth factor, and insulin-like growth factor 1). Full CCK-8 activation of PP1/PP2A required activation of both high- and low-affinity CCK1-receptor states. Using specific PP1 and PP2 assays, in both acini and AR42J cells, experimental conditions were established, where calyculin A, a known nonselective PP1/PP2A inhibitor, inhibited activation of both, whereas okadaic acid and fostriecin inhibited only PP2A activation and tautomycetin inhibited only PP1 activation. Under these conditions, CCK-stimulated enzyme secretion and stimulation of p44/42, a key mediator of growth, required PP2A activation, without activation of PP1. Using specific siRNA for PP1/PP2A in AR42J cells, similar results were found. These results establish that only PP2A activation is essential for CCK-mediated stimulation of growth and enzyme secretion in pancreatic acinar cells and pancreatic acinar AR42J tumor cells.NEW & NOTEWORTHY Despite more than 10 studies, the roles of the serine/threonine phosphatases, PP1/PP2A, in pancreatic acinar cell-secretion/growth remain controversial. This study demonstrates that both PP1/PP2A are present in rat pancreatic acini and in pancreatic acinar tumor-AR42J cells. Both phosphatases are activated by pancreatic secretagogues, stimulating PLC, and by pancreatic growth factors. Using specific inhibitory conditions for PP1/PP2A (inhibitors, siRNA studies), only PP2A activation is needed for CCK-8-stimulated enzyme secretion and growth signaling cascades in pancreatic acinar cells.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.