Danil Kaliakin, Akhil Shajan, Fangchun Liang, Kenneth M Merz
{"title":"Implicit Solvent Sample-Based Quantum Diagonalization.","authors":"Danil Kaliakin, Akhil Shajan, Fangchun Liang, Kenneth M Merz","doi":"10.1021/acs.jpcb.5c01030","DOIUrl":null,"url":null,"abstract":"<p><p>The sample-based quantum diagonalization (SQD) method shows great promise in quantum-centric simulations of ground state energies in molecular systems. Inclusion of solute-solvent interactions in simulations of electronic structure is critical for biochemical and medical applications. However, all of the previous applications of the SQD method were shown for gas-phase simulations of the electronic structure. The present work aims to bridge this gap by introducing the integral equation formalism polarizable continuum model (IEF-PCM) of solvent into the SQD calculations. We perform SQD/cc-pVDZ IEF-PCM simulations of methanol, methylamine, ethanol, and water in aqueous solution using quantum hardware and compare our results to CASCI/cc-pVDZ IEF-PCM simulations. Our simulations on ibm_cleveland, ibm_kyiv, and ibm_marrakesh quantum devices are performed with 27, 30, 41, and 52 qubits demonstrating the scalability of SQD IEF-PCM simulations.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c01030","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sample-based quantum diagonalization (SQD) method shows great promise in quantum-centric simulations of ground state energies in molecular systems. Inclusion of solute-solvent interactions in simulations of electronic structure is critical for biochemical and medical applications. However, all of the previous applications of the SQD method were shown for gas-phase simulations of the electronic structure. The present work aims to bridge this gap by introducing the integral equation formalism polarizable continuum model (IEF-PCM) of solvent into the SQD calculations. We perform SQD/cc-pVDZ IEF-PCM simulations of methanol, methylamine, ethanol, and water in aqueous solution using quantum hardware and compare our results to CASCI/cc-pVDZ IEF-PCM simulations. Our simulations on ibm_cleveland, ibm_kyiv, and ibm_marrakesh quantum devices are performed with 27, 30, 41, and 52 qubits demonstrating the scalability of SQD IEF-PCM simulations.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.