{"title":"Mu Opioid Receptor Positive Allosteric Modulator BMS-986122 Confers Agonist-Dependent G Protein Subtype Signaling Bias.","authors":"Grant M Grieble, Brian I Knapp, Jean M Bidlack","doi":"10.1021/acs.biochem.5c00022","DOIUrl":null,"url":null,"abstract":"<p><p>The mu opioid receptor (MOR) is a G protein-coupled receptor (GPCR) and is responsible for the effects of all medically used opioids. Most opioids activate all inhibitory Gαi/o/z proteins through MOR, initiating signaling events that culminate in a variety of physiological effects such as analgesia, euphoria, and respiratory depression. Gaining a better understanding of how the chemical structure of opioids influences the functional activation profiles of G protein subtypes by MOR is critical for disentangling the multitude of opioid effects and the development of safer analgesics. A recent development in opioid pharmacology has been the discovery of positive allosteric modulators (PAMs) for opioid receptors, such as BMS-986122, which act at the MOR to increase the potency of full agonists and the efficacy of partial agonists. Here, we utilized a nanoBRET-based functional assay system in live HEK 293T cells to study how the pharmacological properties of opioids were uniquely affected by BMS-986122 when the MOR signaled through specific inhibitory Gα subunits. We report that BMS-986122 differentially enhanced opioid activity when the MOR signaled through different Gα subunits with the greatest difference observed with partial agonists. Additionally, the binding affinity of BMS-986122 to the MOR was significantly altered by the co-binding Gα subunit. Site-directed mutagenesis experiments revealed key amino acid residue differences on Gαi/o subunits involved in the differential effects observed. This study sheds light on the molecular features of biased signaling for both opioid ligands and G proteins, which may prove useful for the further development of biased agonists or allosteric modulators at the MOR.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mu opioid receptor (MOR) is a G protein-coupled receptor (GPCR) and is responsible for the effects of all medically used opioids. Most opioids activate all inhibitory Gαi/o/z proteins through MOR, initiating signaling events that culminate in a variety of physiological effects such as analgesia, euphoria, and respiratory depression. Gaining a better understanding of how the chemical structure of opioids influences the functional activation profiles of G protein subtypes by MOR is critical for disentangling the multitude of opioid effects and the development of safer analgesics. A recent development in opioid pharmacology has been the discovery of positive allosteric modulators (PAMs) for opioid receptors, such as BMS-986122, which act at the MOR to increase the potency of full agonists and the efficacy of partial agonists. Here, we utilized a nanoBRET-based functional assay system in live HEK 293T cells to study how the pharmacological properties of opioids were uniquely affected by BMS-986122 when the MOR signaled through specific inhibitory Gα subunits. We report that BMS-986122 differentially enhanced opioid activity when the MOR signaled through different Gα subunits with the greatest difference observed with partial agonists. Additionally, the binding affinity of BMS-986122 to the MOR was significantly altered by the co-binding Gα subunit. Site-directed mutagenesis experiments revealed key amino acid residue differences on Gαi/o subunits involved in the differential effects observed. This study sheds light on the molecular features of biased signaling for both opioid ligands and G proteins, which may prove useful for the further development of biased agonists or allosteric modulators at the MOR.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.