Yidan Hu, Jian Liu, Aloysius Teng, Yingdan Zhang, Liang Yang, Bin Cao
{"title":"Sensitive and Broadly Compatible Transcription Factor-Based Biosensor for Monitoring c-di-GMP Dynamics in Biofilms.","authors":"Yidan Hu, Jian Liu, Aloysius Teng, Yingdan Zhang, Liang Yang, Bin Cao","doi":"10.1021/acssynbio.5c00193","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are ubiquitous and have many negative effects, for example, in infections or biocorrosion. Given the critical role of the second messenger cyclic di-GMP (c-di-GMP) in biofilm formation, targeting a reduction in intracellular concentrations of c-di-GMP is believed to be a key aspect in the development of biofilm mitigation strategies. To facilitate this effort, here, we developed a transcription factor (TF)-based biosensor that integrates the TF FleQ from <i><i>Pseudomonas aeruginosa</i></i> with a P<sub><i>R</i></sub>-P<sub><i>pel</i></sub> tandem promoter. The dynamic range of the biosensor was optimized by fine-tuning the TF expression. The biosensor exhibited broad compatibility and effectiveness in detecting decreases in c-di-GMP levels across various biofilm model organisms, including strains lacking FleQ or its homologues, such as <i><i>Escherichia coli</i></i>, <i><i>Shewanella oneidensis</i></i>, <i>Comamonas testosteroni</i>, and <i><i>Acinetobacter baumannii</i></i>, as well as <i><i>P. aeruginosa</i></i> containing FleQ. Additionally, we monitored c-di-GMP levels in biofilms formed by <i><i>P. aeruginosa</i></i> and <i><i>S. oneidensis</i></i> through a ratiometric, image-based quantification method. The methodology used the green fluorescence protein (GFP) as a reporter for c-di-GMP levels and 4',6-diamidino-2-phenylindole (DAPI) or the monomeric red fluorescence protein (mRFP) as the indicator for biofilm biomass. The GFP/DAPI or GFP/mRFP ratio gives effective c-di-GMP per unit of biomass. This TF-based biosensor provides an important tool to study c-di-GMP dynamics, which facilitates efforts in developing biofilm control strategies and understanding regulatory networks for biofilm development.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"2316-2327"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00193","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilms are ubiquitous and have many negative effects, for example, in infections or biocorrosion. Given the critical role of the second messenger cyclic di-GMP (c-di-GMP) in biofilm formation, targeting a reduction in intracellular concentrations of c-di-GMP is believed to be a key aspect in the development of biofilm mitigation strategies. To facilitate this effort, here, we developed a transcription factor (TF)-based biosensor that integrates the TF FleQ from Pseudomonas aeruginosa with a PR-Ppel tandem promoter. The dynamic range of the biosensor was optimized by fine-tuning the TF expression. The biosensor exhibited broad compatibility and effectiveness in detecting decreases in c-di-GMP levels across various biofilm model organisms, including strains lacking FleQ or its homologues, such as Escherichia coli, Shewanella oneidensis, Comamonas testosteroni, and Acinetobacter baumannii, as well as P. aeruginosa containing FleQ. Additionally, we monitored c-di-GMP levels in biofilms formed by P. aeruginosa and S. oneidensis through a ratiometric, image-based quantification method. The methodology used the green fluorescence protein (GFP) as a reporter for c-di-GMP levels and 4',6-diamidino-2-phenylindole (DAPI) or the monomeric red fluorescence protein (mRFP) as the indicator for biofilm biomass. The GFP/DAPI or GFP/mRFP ratio gives effective c-di-GMP per unit of biomass. This TF-based biosensor provides an important tool to study c-di-GMP dynamics, which facilitates efforts in developing biofilm control strategies and understanding regulatory networks for biofilm development.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.