Sina Shadfar, Fabiha Farzana, Sayanthooran Saravanabavan, Ashley M Rozario, Marta Vidal, Cyril Jones Jagaraj, Sonam Parakh, Esmeralda Paric, Kristy C Yuan, Mariana Brocardo, Donna R Whelan, Angela S Laird, Julie D Atkin
{"title":"The Redox Activity of Protein Disulphide Isomerase Functions in Non-Homologous End-Joining Repair to Prevent DNA Damage.","authors":"Sina Shadfar, Fabiha Farzana, Sayanthooran Saravanabavan, Ashley M Rozario, Marta Vidal, Cyril Jones Jagaraj, Sonam Parakh, Esmeralda Paric, Kristy C Yuan, Mariana Brocardo, Donna R Whelan, Angela S Laird, Julie D Atkin","doi":"10.1111/acel.70079","DOIUrl":null,"url":null,"abstract":"<p><p>DNA damage is a serious threat to cellular viability, and it is implicated as the major cause of normal ageing. Hence, targeting DNA damage therapeutically may counteract age-related cellular dysfunction and disease, such as neurodegenerative conditions and cancer. Identifying novel DNA repair mechanisms therefore reveals new therapeutic interventions for multiple human diseases. In neurons, non-homologous end-joining (NHEJ) is the only mechanism available to repair double-stranded DNA breaks (DSB), which is much more error prone than other DNA repair processes. However, there are no therapeutic interventions to enhance DNA repair in diseases affecting neurons. NHEJ is also a useful target for DNA repair-based cancer therapies to selectively kill tumour cells. Protein disulphide isomerase (PDI) participates in many diseases, but its roles in these conditions remain poorly defined. PDI exhibits both chaperone and redox-dependent oxidoreductase activity, and while primarily localised in the endoplasmic reticulum it has also been detected in other cellular locations. We describe here a novel role for PDI in DSB repair following at least two types of DNA damage. PDI functions in NHEJ, and following DNA damage, it relocates to the nucleus, where it co-localises with critical DSB repair proteins at DNA damage foci. A redox-inactive mutant of PDI lacking its two active site cysteine residues was not protective, however. Hence, the redox activity of PDI mediates DNA repair, highlighting these cysteines as targets for therapeutic intervention. The therapeutic potential of PDI was also confirmed by its protective activity in a whole organism against DNA damage induced in vivo in zebrafish. Hence, harnessing the redox function of PDI has potential as a novel therapeutic target against DSB DNA damage relevant to several human diseases.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70079"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70079","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA damage is a serious threat to cellular viability, and it is implicated as the major cause of normal ageing. Hence, targeting DNA damage therapeutically may counteract age-related cellular dysfunction and disease, such as neurodegenerative conditions and cancer. Identifying novel DNA repair mechanisms therefore reveals new therapeutic interventions for multiple human diseases. In neurons, non-homologous end-joining (NHEJ) is the only mechanism available to repair double-stranded DNA breaks (DSB), which is much more error prone than other DNA repair processes. However, there are no therapeutic interventions to enhance DNA repair in diseases affecting neurons. NHEJ is also a useful target for DNA repair-based cancer therapies to selectively kill tumour cells. Protein disulphide isomerase (PDI) participates in many diseases, but its roles in these conditions remain poorly defined. PDI exhibits both chaperone and redox-dependent oxidoreductase activity, and while primarily localised in the endoplasmic reticulum it has also been detected in other cellular locations. We describe here a novel role for PDI in DSB repair following at least two types of DNA damage. PDI functions in NHEJ, and following DNA damage, it relocates to the nucleus, where it co-localises with critical DSB repair proteins at DNA damage foci. A redox-inactive mutant of PDI lacking its two active site cysteine residues was not protective, however. Hence, the redox activity of PDI mediates DNA repair, highlighting these cysteines as targets for therapeutic intervention. The therapeutic potential of PDI was also confirmed by its protective activity in a whole organism against DNA damage induced in vivo in zebrafish. Hence, harnessing the redox function of PDI has potential as a novel therapeutic target against DSB DNA damage relevant to several human diseases.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.