Ewelina Jalonicka, Konstantin Rusakov, Grzegorz Szwachta, Piotr Hanczyc
{"title":"Thioflavin T Lasing Probe for Mucin Detection in Simulated Tears as a Targeting Strategy for Brain Tumors.","authors":"Ewelina Jalonicka, Konstantin Rusakov, Grzegorz Szwachta, Piotr Hanczyc","doi":"10.1021/acschemneuro.5c00274","DOIUrl":null,"url":null,"abstract":"<p><p>A novel optical approach for a noninvasive detection of mucins in tear fluid is proposed, aiming at the early diagnosis of brain tumors such as glioblastoma. Utilizing Thioflavin T (ThT) as a fluorescent probe, our study demonstrates that ThT selectively binds to mucins (modeled by MUC3) in DEMI water, artificial tears, and simulated tears. Steady-state and time-resolved fluorescence spectroscopy reveal that mucin binding induces a significant enhancement in ThT fluorescence and prolonged emission lifetime, indicative of restricted intramolecular rotation. Importantly, the application of Fabry-Pérot cavity lasing spectroscopy enabled the resolution of distinct spectral signatures of the ThT-mucin complex, including the emergence of dual lasing peaks and an increased lasing threshold in mucin-rich samples compared to controls. These optical fingerprints provide compelling evidence of specific ThT-mucin interactions that are not discernible with conventional fluorescence techniques. Our findings highlight the potential of the ThT probe and lasing method as a sensitive, noninvasive platform for detecting mucins in tears, offering a promising strategy for the early detection of glioblastoma.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00274","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel optical approach for a noninvasive detection of mucins in tear fluid is proposed, aiming at the early diagnosis of brain tumors such as glioblastoma. Utilizing Thioflavin T (ThT) as a fluorescent probe, our study demonstrates that ThT selectively binds to mucins (modeled by MUC3) in DEMI water, artificial tears, and simulated tears. Steady-state and time-resolved fluorescence spectroscopy reveal that mucin binding induces a significant enhancement in ThT fluorescence and prolonged emission lifetime, indicative of restricted intramolecular rotation. Importantly, the application of Fabry-Pérot cavity lasing spectroscopy enabled the resolution of distinct spectral signatures of the ThT-mucin complex, including the emergence of dual lasing peaks and an increased lasing threshold in mucin-rich samples compared to controls. These optical fingerprints provide compelling evidence of specific ThT-mucin interactions that are not discernible with conventional fluorescence techniques. Our findings highlight the potential of the ThT probe and lasing method as a sensitive, noninvasive platform for detecting mucins in tears, offering a promising strategy for the early detection of glioblastoma.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research