Identification of a Lipid-Exposed Extrahelical Binding Site for Positive Allosteric Modulators of the Dopamine D2 Receptor.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Herman D Lim, Damian Bartuzi, Alastair C Keen, Caroline Rauffenbart, Jacqueline Glenn, Steven J Charlton, Silvia Lovera, Zara A Sands, Ali Ates, Martyn Wood, Meritxell Canals, Jonathan A Javitch, Jens Carlsson, J Robert Lane
{"title":"Identification of a Lipid-Exposed Extrahelical Binding Site for Positive Allosteric Modulators of the Dopamine D<sub>2</sub> Receptor.","authors":"Herman D Lim, Damian Bartuzi, Alastair C Keen, Caroline Rauffenbart, Jacqueline Glenn, Steven J Charlton, Silvia Lovera, Zara A Sands, Ali Ates, Martyn Wood, Meritxell Canals, Jonathan A Javitch, Jens Carlsson, J Robert Lane","doi":"10.1021/acschemneuro.5c00105","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the first small-molecule positive allosteric modulators (PAMs) of the dopamine D<sub>2</sub> receptor (D<sub>2</sub>R) were identified. The more potent PAM potentiated the effects of D<sub>2</sub>R signaling in vitro and in an in vivo model predictive of anti-Parkinson's efficacy. We reveal, based on the results of our site-directed mutagenesis and molecular dynamics experiments, that this scaffold binds to a hitherto unexploited lipid-exposed extrahelical allosteric site in the D<sub>2</sub>R that lies in a cleft toward the intracellular aspect of the D<sub>2</sub>R defined by residues in transmembrane domains 1 and 7 and helix 8. By binding to this site, the PAM acts to potentiate the binding affinity of efficacious agonists, such as dopamine. Our simulations suggest that the PAM achieves this effect by stabilizing an active-like conformation of the receptor, similar to the G protein-bound state with TM5 and the tyrosine toggle switch playing the major role.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00105","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the first small-molecule positive allosteric modulators (PAMs) of the dopamine D2 receptor (D2R) were identified. The more potent PAM potentiated the effects of D2R signaling in vitro and in an in vivo model predictive of anti-Parkinson's efficacy. We reveal, based on the results of our site-directed mutagenesis and molecular dynamics experiments, that this scaffold binds to a hitherto unexploited lipid-exposed extrahelical allosteric site in the D2R that lies in a cleft toward the intracellular aspect of the D2R defined by residues in transmembrane domains 1 and 7 and helix 8. By binding to this site, the PAM acts to potentiate the binding affinity of efficacious agonists, such as dopamine. Our simulations suggest that the PAM achieves this effect by stabilizing an active-like conformation of the receptor, similar to the G protein-bound state with TM5 and the tyrosine toggle switch playing the major role.

多巴胺D2受体阳性变构调节剂的脂质暴露的螺旋外结合位点的鉴定。
近年来,首次发现了多巴胺D2受体(D2R)的小分子正变构调节剂(PAMs)。在体外和体内模型中,更有效的PAM增强了D2R信号的作用,预测了抗帕金森病的疗效。基于位点定向诱变和分子动力学实验的结果,我们发现该支架与D2R中迄今尚未开发的脂质暴露的螺旋外变构位点结合,该位点位于D2R胞内方面的间隙中,由跨膜结构域1和7以及螺旋8中的残基定义。通过与该位点结合,PAM增强了有效激动剂(如多巴胺)的结合亲和力。我们的模拟表明,PAM通过稳定受体的活性构象来实现这种效果,类似于G蛋白结合状态,其中TM5和酪氨酸开关起主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信