Bandgap-Engineered Semiconductors Spectrometers

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gongyuan Zhang, Zhi Ma, Hao Cui, Pan Wang, Feng Tang, Xin Ye, Rong Xiang, Bingfeng Ju, Hui-Liang Shen, Shurong Dong, Jikui Luo, Qi Jie Wang, Shilong Pan, Ang Li, Zongyin Yang
{"title":"Bandgap-Engineered Semiconductors Spectrometers","authors":"Gongyuan Zhang,&nbsp;Zhi Ma,&nbsp;Hao Cui,&nbsp;Pan Wang,&nbsp;Feng Tang,&nbsp;Xin Ye,&nbsp;Rong Xiang,&nbsp;Bingfeng Ju,&nbsp;Hui-Liang Shen,&nbsp;Shurong Dong,&nbsp;Jikui Luo,&nbsp;Qi Jie Wang,&nbsp;Shilong Pan,&nbsp;Ang Li,&nbsp;Zongyin Yang","doi":"10.1002/adom.202402935","DOIUrl":null,"url":null,"abstract":"<p>Spectrometers are vital analytical tools for measuring light spectra, crucial for applications ranging from environmental monitoring to biomedical diagnostics. A significant challenge in the miniaturization of these instruments is achieving efficient light dispersion in confined spaces. Traditional dispersion elements, such as gratings and prisms, require precise geometrical arrangements, rendering them unsuitable for compact designs. This study introduces a novel approach to light dispersion utilizing a bandgap-graded semiconductor film, synthesized through a streamlined material preparation process. The film's intrinsic transmission properties enable effective light dispersion without the limitations imposed by optical interference, making it ideal for integration into miniaturized optical devices. The practical application of this technology is demonstrated through the development of a compact spectrometer capable of large-field and microscopic spectral imaging. The investigation into light dispersion in engineered materials sets a new paradigm and lays the foundation for the design of optical systems.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 14","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402935","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spectrometers are vital analytical tools for measuring light spectra, crucial for applications ranging from environmental monitoring to biomedical diagnostics. A significant challenge in the miniaturization of these instruments is achieving efficient light dispersion in confined spaces. Traditional dispersion elements, such as gratings and prisms, require precise geometrical arrangements, rendering them unsuitable for compact designs. This study introduces a novel approach to light dispersion utilizing a bandgap-graded semiconductor film, synthesized through a streamlined material preparation process. The film's intrinsic transmission properties enable effective light dispersion without the limitations imposed by optical interference, making it ideal for integration into miniaturized optical devices. The practical application of this technology is demonstrated through the development of a compact spectrometer capable of large-field and microscopic spectral imaging. The investigation into light dispersion in engineered materials sets a new paradigm and lays the foundation for the design of optical systems.

带隙工程半导体光谱仪
光谱仪是测量光谱的重要分析工具,从环境监测到生物医学诊断等应用都至关重要。这些仪器小型化的一个重大挑战是在有限空间内实现有效的光散射。传统的色散元件,如光栅和棱镜,需要精确的几何排列,使它们不适合紧凑的设计。本研究介绍了一种利用带隙梯度半导体薄膜的光色散新方法,该薄膜是通过流线型材料制备工艺合成的。薄膜的固有传输特性使有效的光色散没有光干涉的限制,使其成为集成到小型化光学器件的理想选择。该技术的实际应用是通过开发一个紧凑的光谱仪能够大视场和微观光谱成像。对工程材料中光色散的研究为光学系统的设计提供了新的范例和基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信