Influence of Ti─O Bonding and Temperature on the Optical Properties of Ultra-Broadband Low-Reflectance Ti3O5

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liping Tong, Nianao Xu, Zhiyuan Zhao, Yang Xu, Xianhao Lan, Zhiya Han, Miaosen Yang, Su Zhao, Bingyang Ma, Yixin Liu, Yue Kang, Xiyang Liu, Xiaoben Qi, Lianyi Xu, Tao Zhou, Zhongyang Wang, Tongxiang Fan
{"title":"Influence of Ti─O Bonding and Temperature on the Optical Properties of Ultra-Broadband Low-Reflectance Ti3O5","authors":"Liping Tong,&nbsp;Nianao Xu,&nbsp;Zhiyuan Zhao,&nbsp;Yang Xu,&nbsp;Xianhao Lan,&nbsp;Zhiya Han,&nbsp;Miaosen Yang,&nbsp;Su Zhao,&nbsp;Bingyang Ma,&nbsp;Yixin Liu,&nbsp;Yue Kang,&nbsp;Xiyang Liu,&nbsp;Xiaoben Qi,&nbsp;Lianyi Xu,&nbsp;Tao Zhou,&nbsp;Zhongyang Wang,&nbsp;Tongxiang Fan","doi":"10.1002/adom.202403223","DOIUrl":null,"url":null,"abstract":"<p>Low ultra-wide band reflection materials are significant because of their applicability to “black” surfaces. Here, a new promising “black” surface Ti<sub>3</sub>O<sub>5</sub> ceramic with semiconductor–metal phase transition has been discovered through experimental demonstration and density functional theory calculation on three types of phases for Ti<sub>3</sub>O<sub>5</sub> at various temperatures. The Ti<sub>3</sub>O<sub>5</sub> ceramic displayed low and temperature-dependent reflectivity in the ultra-wideband. It is made by carbothermal reduction, appearing as a reversible semiconductor–metal transition in β–Ti<sub>3</sub>O<sub>5</sub> and α–Ti<sub>3</sub>O<sub>5</sub> when heated from room temperature to 220°C. The observed temperature-dependent tunability in terms of ultra-broadband low-reflectivity (0.25–16.0 µm) arises from sequential phase transitions from β–Ti<sub>3</sub>O<sub>5</sub> to λ–Ti<sub>3</sub>O<sub>5</sub> and finally to α–Ti<sub>3</sub>O<sub>5</sub>. Additionally, the mechanism of the Ti─O bond for temperature-dependent emissivity is proposed by combining the orbital characteristics of the density of states and phononic structures. Furthermore, a composite PE/Ti<sub>3</sub>O<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> exhibited 37% reduced solar absorptivity while maintaining high infrared emissivity (∼0.92), confirming Ti-O bonds dominate emissivity properties rather than structural modifications. This work will guide selecting and preparing “black” surface Ti3O5 material toward the desired wavelength-selectable emissivity to satisfy numerous applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 14","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403223","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low ultra-wide band reflection materials are significant because of their applicability to “black” surfaces. Here, a new promising “black” surface Ti3O5 ceramic with semiconductor–metal phase transition has been discovered through experimental demonstration and density functional theory calculation on three types of phases for Ti3O5 at various temperatures. The Ti3O5 ceramic displayed low and temperature-dependent reflectivity in the ultra-wideband. It is made by carbothermal reduction, appearing as a reversible semiconductor–metal transition in β–Ti3O5 and α–Ti3O5 when heated from room temperature to 220°C. The observed temperature-dependent tunability in terms of ultra-broadband low-reflectivity (0.25–16.0 µm) arises from sequential phase transitions from β–Ti3O5 to λ–Ti3O5 and finally to α–Ti3O5. Additionally, the mechanism of the Ti─O bond for temperature-dependent emissivity is proposed by combining the orbital characteristics of the density of states and phononic structures. Furthermore, a composite PE/Ti3O5/Al2O3 exhibited 37% reduced solar absorptivity while maintaining high infrared emissivity (∼0.92), confirming Ti-O bonds dominate emissivity properties rather than structural modifications. This work will guide selecting and preparing “black” surface Ti3O5 material toward the desired wavelength-selectable emissivity to satisfy numerous applications.

Ti─O键合和温度对超宽带低反射率Ti3O5光学特性的影响
低超宽带反射材料因其适用于“黑色”表面而具有重要意义。本文通过对Ti3O5在不同温度下的三种相的实验论证和密度泛函理论计算,发现了一种具有半导体-金属相变的新型“黑色”表面Ti3O5陶瓷。Ti3O5陶瓷在超宽带表现出低反射率和温度依赖性。由碳热还原法制得,从室温加热到220℃时,β-Ti3O5和α-Ti3O5表现为可逆的半导体-金属转变。超宽带低反射率(0.25 ~ 16.0µm)的温度依赖性可调性是由β-Ti3O5→λ-Ti3O5→α-Ti3O5的顺序相变引起的。此外,结合态密度和声子结构的轨道特征,提出了Ti─O键随温度变化的发射率机制。此外,PE/Ti3O5/Al2O3复合材料的太阳吸收率降低了37%,同时保持了较高的红外发射率(~ 0.92),证实了Ti-O键主导发射率性质而不是结构修饰。这项工作将指导选择和制备“黑色”表面Ti3O5材料,以实现所需的波长可选发射率,以满足众多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信