On the Li–Zheng theorem

IF 0.9 3区 数学 Q2 MATHEMATICS
Gennadiy Feldman
{"title":"On the Li–Zheng theorem","authors":"Gennadiy Feldman","doi":"10.1007/s00010-024-01120-x","DOIUrl":null,"url":null,"abstract":"<div><p>By the well-known I. Kotlarski lemma, if <span>\\(\\xi _1\\)</span>, <span>\\(\\xi _2\\)</span>, and <span>\\(\\xi _3\\)</span> are independent real-valued random variables with nonvanishing characteristic functions, <span>\\(L_1=\\xi _1-\\xi _3\\)</span> and <span>\\(L_2=\\xi _2-\\xi _3\\)</span>, then the distribution of the random vector <span>\\((L_1, L_2)\\)</span> determines the distributions of the random variables <span>\\(\\xi _j\\)</span> up to shift. Siran Li and Xunjie Zheng generalized this result for the linear forms <span>\\(L_1=\\xi _1+a_2\\xi _2+a_3\\xi _3\\)</span> and <span>\\(L_2=b_2\\xi _2+b_3\\xi _3+\\xi _4\\)</span> assuming that all <span>\\(\\xi _j\\)</span> have first and second moments, <span>\\(\\xi _2\\)</span> and <span>\\(\\xi _3\\)</span> are identically distributed, and <span>\\(a_j\\)</span>, <span>\\(b_j\\)</span> satisfy some conditions. In the article, we give a simpler proof of this theorem. In doing so, we also prove that the condition of existence of moments can be omitted. Moreover, we prove an analogue of the Li–Zheng theorem for independent random variables with values in the field of <i>p</i>-adic numbers, in the field of integers modulo <i>p</i>, where <span>\\(p\\ne 2\\)</span>, and in the discrete field of rational numbers.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 3","pages":"927 - 947"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01120-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

By the well-known I. Kotlarski lemma, if \(\xi _1\), \(\xi _2\), and \(\xi _3\) are independent real-valued random variables with nonvanishing characteristic functions, \(L_1=\xi _1-\xi _3\) and \(L_2=\xi _2-\xi _3\), then the distribution of the random vector \((L_1, L_2)\) determines the distributions of the random variables \(\xi _j\) up to shift. Siran Li and Xunjie Zheng generalized this result for the linear forms \(L_1=\xi _1+a_2\xi _2+a_3\xi _3\) and \(L_2=b_2\xi _2+b_3\xi _3+\xi _4\) assuming that all \(\xi _j\) have first and second moments, \(\xi _2\) and \(\xi _3\) are identically distributed, and \(a_j\), \(b_j\) satisfy some conditions. In the article, we give a simpler proof of this theorem. In doing so, we also prove that the condition of existence of moments can be omitted. Moreover, we prove an analogue of the Li–Zheng theorem for independent random variables with values in the field of p-adic numbers, in the field of integers modulo p, where \(p\ne 2\), and in the discrete field of rational numbers.

论李正定理
根据著名的I. Kotlarski引理,如果\(\xi _1\), \(\xi _2\)和\(\xi _3\)是独立的实值随机变量,具有不消失的特征函数\(L_1=\xi _1-\xi _3\)和\(L_2=\xi _2-\xi _3\),那么随机向量\((L_1, L_2)\)的分布决定了随机变量\(\xi _j\)直到移位的分布。李思然和郑勋杰对线性形式\(L_1=\xi _1+a_2\xi _2+a_3\xi _3\)和\(L_2=b_2\xi _2+b_3\xi _3+\xi _4\)推广了这一结果,假设所有的\(\xi _j\)都有一阶矩和二阶矩,\(\xi _2\)和\(\xi _3\)是同分布的,\(a_j\)和\(b_j\)满足一些条件。在本文中,我们给出了这个定理的一个更简单的证明。在此过程中,我们也证明了矩的存在条件可以省略。此外,我们证明了具有p进数域、以p为模的整数域(其中\(p\ne 2\))和有理数离散域内值的独立随机变量的李征定理的一个类似情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信