Boundedness and Large Time Behavior in a Two-Dimensional Keller-Segel-Navier-Stokes System with Nonlinear Diffusion Modeling Coral Fertilization

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Na Huang, Chunlai Mu, Minghua Zhang, Xu Pan
{"title":"Boundedness and Large Time Behavior in a Two-Dimensional Keller-Segel-Navier-Stokes System with Nonlinear Diffusion Modeling Coral Fertilization","authors":"Na Huang,&nbsp;Chunlai Mu,&nbsp;Minghua Zhang,&nbsp;Xu Pan","doi":"10.1007/s10440-025-00731-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with a two-dimensional Keller-Segel-Navier-Stokes system of coral fertilization with porous medium diffusion. When the nonlinear diffusion exponents of sperms and eggs <span>\\(m&gt;\\frac{1}{2}\\)</span>, <span>\\(l&gt;0\\)</span> respectively, as well as the strength of fertilization <span>\\(\\mu &gt;0\\)</span>, the system possesses a global bounded weak solution. Furthermore, if <span>\\(0&lt; l&lt;1\\)</span>, the corresponding global weak solution stabilizes to the spatially homogeneous equilibrium <span>\\((n_{\\infty },\\rho _{\\infty },\\rho _{\\infty },0)\\)</span> in an appropriate sense, where <span>\\(n_{\\infty }:=\\frac{1}{|\\Omega |}(\\int _{\\Omega }n_{0}-\\int _{\\Omega } \\rho _{0})_{+}\\)</span> and <span>\\(\\rho _{\\infty }:=\\frac{1}{|\\Omega |}(\\int _{\\Omega }\\rho _{0}-\\int _{ \\Omega }n_{0})_{+}\\)</span>.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"197 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00731-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a two-dimensional Keller-Segel-Navier-Stokes system of coral fertilization with porous medium diffusion. When the nonlinear diffusion exponents of sperms and eggs \(m>\frac{1}{2}\), \(l>0\) respectively, as well as the strength of fertilization \(\mu >0\), the system possesses a global bounded weak solution. Furthermore, if \(0< l<1\), the corresponding global weak solution stabilizes to the spatially homogeneous equilibrium \((n_{\infty },\rho _{\infty },\rho _{\infty },0)\) in an appropriate sense, where \(n_{\infty }:=\frac{1}{|\Omega |}(\int _{\Omega }n_{0}-\int _{\Omega } \rho _{0})_{+}\) and \(\rho _{\infty }:=\frac{1}{|\Omega |}(\int _{\Omega }\rho _{0}-\int _{ \Omega }n_{0})_{+}\).

非线性扩散模拟珊瑚受精的二维Keller-Segel-Navier-Stokes系统的有界性和大时间行为
本文研究了多孔介质扩散下珊瑚施肥的二维Keller-Segel-Navier-Stokes系统。当精子和卵子的非线性扩散指数分别为\(m>\frac{1}{2}\), \(l>0\)以及受精强度\(\mu >0\)时,系统具有全局有界弱解。进一步,如果\(0< l<1\),对应的全局弱解在适当意义上稳定到空间均匀平衡\((n_{\infty },\rho _{\infty },\rho _{\infty },0)\),其中\(n_{\infty }:=\frac{1}{|\Omega |}(\int _{\Omega }n_{0}-\int _{\Omega } \rho _{0})_{+}\)和\(\rho _{\infty }:=\frac{1}{|\Omega |}(\int _{\Omega }\rho _{0}-\int _{ \Omega }n_{0})_{+}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信