{"title":"Structural contrastive learning based automatic bug triaging","authors":"Yi Tao, Jie Dai, Lingna Ma, Zhenhui Ren, Fei Wang","doi":"10.1007/s10515-025-00517-5","DOIUrl":null,"url":null,"abstract":"<div><p>Bug triaging is crucial for software maintenance, as it matches developers with bug reports they are most qualified to handle. This task has gained importance with the growth of the open-source community. Traditionally, methods have emphasized semantic classification of bug reports, but recent approaches focus on the associations between bugs and developers. Leveraging latent patterns from bug-fixing records can enhance triaging predictions; however, the limited availability of these records presents a significant challenge. This scarcity highlights a broader issue in supervised learning: the inadequacy of labeled data and the underutilization of unlabeled data. To address these limitations, we propose a novel framework named SCL-BT (Structural Contrastive Learning-based Bug Triaging). This framework improves the utilization of labeled heterogeneous associations through edge perturbation and leverages unlabeled homogeneous associations via hypergraph sampling. These processes are integrated with a graph convolutional network backbone to enhance the prediction of associations and, consequently, bug triaging accuracy. Experimental results demonstrate that SCL-BT significantly outperforms existing models on public datasets. Specifically, on the Google Chromium dataset, SCL-BT surpasses the GRCNN method by 18.64<span>\\(\\%\\)</span> in terms of the Top-9 Hit Ratio metric. The innovative approach of SCL-BT offers valuable insights for the research of automatic bug-triaging.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00517-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Bug triaging is crucial for software maintenance, as it matches developers with bug reports they are most qualified to handle. This task has gained importance with the growth of the open-source community. Traditionally, methods have emphasized semantic classification of bug reports, but recent approaches focus on the associations between bugs and developers. Leveraging latent patterns from bug-fixing records can enhance triaging predictions; however, the limited availability of these records presents a significant challenge. This scarcity highlights a broader issue in supervised learning: the inadequacy of labeled data and the underutilization of unlabeled data. To address these limitations, we propose a novel framework named SCL-BT (Structural Contrastive Learning-based Bug Triaging). This framework improves the utilization of labeled heterogeneous associations through edge perturbation and leverages unlabeled homogeneous associations via hypergraph sampling. These processes are integrated with a graph convolutional network backbone to enhance the prediction of associations and, consequently, bug triaging accuracy. Experimental results demonstrate that SCL-BT significantly outperforms existing models on public datasets. Specifically, on the Google Chromium dataset, SCL-BT surpasses the GRCNN method by 18.64\(\%\) in terms of the Top-9 Hit Ratio metric. The innovative approach of SCL-BT offers valuable insights for the research of automatic bug-triaging.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.