Study on Coherent Speckle Noise Suppression in the SAR Images Based on Regional Division

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xingdong Wang;Yudong Wang;Suwei Li
{"title":"Study on Coherent Speckle Noise Suppression in the SAR Images Based on Regional Division","authors":"Xingdong Wang;Yudong Wang;Suwei Li","doi":"10.1109/JSTARS.2025.3563613","DOIUrl":null,"url":null,"abstract":"Polar snowmelt detection is of great importance for the study of global climate change, and synthetic aperture radar (SAR) images have been widely used for polar snowmelt detection because of its ability to provide round-the-clock, all-weather snowmelt detection. However, conventional snowmelt detection algorithms based on the SAR images have images that are susceptible to interference from coherent speckle noise, which leads to the problems of false pixel and missed change detection. To solve the above-mentioned problems, this article proposed a coherent speckle noise suppression algorithm for the SAR images based on the measure of heterogeneity. That is, the SAR images are divided into homogeneous regions, edge regions, and isolated strong scattering regions by the measure of heterogeneity, and different construction algorithms are used for different regions, which was applied to the Larsen C ice shelf. The results showed that the construction algorithm in this article achieved better results in noise suppression, structure preservation and detail retention, and the comprehensive performance was better in the homogeneous regions and edge regions, which could reduce the false alarm rate and leakage rate, and provided algorithmic support for the study of polar snowmelt detection.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"11703-11715"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974644","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10974644/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polar snowmelt detection is of great importance for the study of global climate change, and synthetic aperture radar (SAR) images have been widely used for polar snowmelt detection because of its ability to provide round-the-clock, all-weather snowmelt detection. However, conventional snowmelt detection algorithms based on the SAR images have images that are susceptible to interference from coherent speckle noise, which leads to the problems of false pixel and missed change detection. To solve the above-mentioned problems, this article proposed a coherent speckle noise suppression algorithm for the SAR images based on the measure of heterogeneity. That is, the SAR images are divided into homogeneous regions, edge regions, and isolated strong scattering regions by the measure of heterogeneity, and different construction algorithms are used for different regions, which was applied to the Larsen C ice shelf. The results showed that the construction algorithm in this article achieved better results in noise suppression, structure preservation and detail retention, and the comprehensive performance was better in the homogeneous regions and edge regions, which could reduce the false alarm rate and leakage rate, and provided algorithmic support for the study of polar snowmelt detection.
基于区域分割的SAR图像相干散斑噪声抑制研究
极地融雪探测对于全球气候变化的研究具有重要意义,合成孔径雷达(SAR)图像由于能够提供全天候、全天候的融雪探测,被广泛应用于极地融雪探测。然而,传统的基于SAR图像的融雪检测算法容易受到相干散斑噪声的干扰,从而导致假像元和漏检变化的问题。针对上述问题,本文提出了一种基于非均质性度量的SAR图像相干散斑噪声抑制算法。即通过非均质性度量将SAR图像划分为均匀区、边缘区和孤立强散射区,并针对不同区域采用不同的构建算法,以Larsen C冰架为例。结果表明,本文构建算法在噪声抑制、结构保存和细节保留方面取得了较好的效果,且在均匀区和边缘区综合性能较好,可以降低虚警率和漏报率,为极地融雪检测研究提供了算法支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信