{"title":"A Transfer Learning Approach for Landslide Semantic Segmentation Based on Visual Foundation Model","authors":"Changhong Hou;Junchuan Yu;Daqing Ge;Liu Yang;Laidian Xi;Yunxuan Pang;Yi Wen","doi":"10.1109/JSTARS.2025.3559884","DOIUrl":null,"url":null,"abstract":"Landslides are one of the most destructive natural disasters in the world, threatening human life and safety. With excellent performance as a foundation model for image segmentation, the segment anything model (SAM) has provided a novel paradigm for semantic segmentation research. However, the lack of remote sensing images in the SAM training data limits its ability to recognize landslides. In addition, despite the transfer learning approach can transfer SAM feature extraction capability to the landslide segmentation task, but it will consume a lot of computational resources and training time. In order to solve these challenges, this study proposes a TransLandSeg model that transfers the segmentation capability of SAM while learning landslide features at a low training cost. To limit model training parameters, the adaptive transfer learning (ATL) module is purposely designed, the image encoder is frozen during model training, only the ATL module and mask decoder are trained, and the knowledge learned from the ATL module is input into the original network. Moreover, to select the best ATL module, we also designed 9 kinds of ATL modules and analyzed the accuracy of the TransLandSeg model with different ATL modules. We selected the Bijie landslide dataset and the Landslide4Sense dataset for model training and testing. The experiment results show that the TransLandSeg model increases the mean intersection over union by 1.48% –13.01% compared to other state-of-the-art semantic segmentation models. In addition, TransLandSeg requires only 1.3% of SAM parameters to enable SAM's powerful capabilities to transfer to landslide segmentation.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"11561-11572"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10962290","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10962290/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Landslides are one of the most destructive natural disasters in the world, threatening human life and safety. With excellent performance as a foundation model for image segmentation, the segment anything model (SAM) has provided a novel paradigm for semantic segmentation research. However, the lack of remote sensing images in the SAM training data limits its ability to recognize landslides. In addition, despite the transfer learning approach can transfer SAM feature extraction capability to the landslide segmentation task, but it will consume a lot of computational resources and training time. In order to solve these challenges, this study proposes a TransLandSeg model that transfers the segmentation capability of SAM while learning landslide features at a low training cost. To limit model training parameters, the adaptive transfer learning (ATL) module is purposely designed, the image encoder is frozen during model training, only the ATL module and mask decoder are trained, and the knowledge learned from the ATL module is input into the original network. Moreover, to select the best ATL module, we also designed 9 kinds of ATL modules and analyzed the accuracy of the TransLandSeg model with different ATL modules. We selected the Bijie landslide dataset and the Landslide4Sense dataset for model training and testing. The experiment results show that the TransLandSeg model increases the mean intersection over union by 1.48% –13.01% compared to other state-of-the-art semantic segmentation models. In addition, TransLandSeg requires only 1.3% of SAM parameters to enable SAM's powerful capabilities to transfer to landslide segmentation.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.